# CycloSal-BVDUMP Pronucleotides: How to Convert an Antiviral-Inactive Nucleoside Analogue into a Bioactive Compound against EBV 

Chris Meier, ${ }^{*, \dagger}$ Andreas Lomp, ${ }^{\dagger}$ Astrid M eerbach, ${ }^{\ddagger}$ and Peter Wutzler ${ }^{\ddagger}$<br>Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany and ${ }^{\dagger}$ Institute for Antiviral Chemotherapy, Friedrich-Schiller-University J ena, Winzerlaer Strasse 10, D-07745 J ena, Germany

Received May 3, 2002


#### Abstract

Novel cycloSal-BVDUMP triesters 2-4 5-[(E)-2-bromovinyl]-2'-deoxyuridine (BVDU, 1) have been studied with regard to their potential anti-EBV activity. In addition to the $3^{\prime}$-unmodified cycloSal-BVDUMP triesters 2a-f, the 3'-hydroxyl function has been esterified with different aliphatic carboxylic acids ( $\mathbf{3 a -} \mathbf{- g}$ ) and $\alpha$-amino acids having natural and nonnatural $\mathrm{C} \alpha$ configuration ( $\mathbf{4 a - m}$ ). In addition to the synthesis of these compounds, different physicochemical properties of the new derivatives will be reported, i.e., li pophilicity and hydrolysis behavior. It could be proven that the monophosphate BVDUMP and not $3^{\prime}, 5^{\prime}$-cyclic BVDUMP was delivered from most of the compounds by chemical hydrolysis in phosphate buffers at pH 6.8 and 7.3 as well as P3HR-1 cell extracts. Finally, the new compounds were tested for their anti-EBV activity. As a result, the prototype compounds and particularly triesters $\mathbf{2 c}$, d exhibited pronounced anti-EBV activity making these compounds promising candidates for further development. However, the 3'-ester derivatives were devoid of any antiviral activity while the $3^{3}$-aminoacyl derivatives showed an antiviral activity dependent upon the amino acid and the C $\alpha$-configuration


## Introduction

Diseases caused by herpes viruses play an important role in infections of humans. Acyclovir was the prototype of the first generation of selective antiviral agents ${ }^{1}$ and has been the gold standard for the therapy and suppression of herpes simplex virus (HSV) infections for more then 20 years. ${ }^{2}$ It is phosphorylated sel ectively by HSV- and VZV-encoded thymidine kinase (TK ) in virusinfected cells to the mono- and diphosphate, respectively, and finally by cellular enzymes to the di- and triphosphate, which inhibits viral DNA polymerase and/ or causes chain elongation arrest. Today, the second (brivudin, famciclovir, valaciclovir) and third (cidofovir3) generations of antiherpes virus drugs are in use.

An emerging area of concern are Epstein-Barr virus (EBV)-caused viral infections and their role they play particularly in posttransplant lymphoprol iferative disorders. EBV is the causative agent of infectious and chronic mononucl eosis. ${ }^{4}$ M oreover, it is associated with the devel opment of several human malignancies ${ }^{5}$ (e.g., gastric carcinomas ${ }^{6}$ ) as well as oral hairy leucoplakia. ${ }^{7}$ Tumors classically linked with EBV are Burkitt's lymphoma ${ }^{8}$ and nasopharyngeal carcinoma. ${ }^{9}$ M ore recently, associations of EBV and B-cell lymphomas in immunosuppressed patients (including AIDS patients), ${ }^{10}$ certain rare T-cell lymphomas, ${ }^{1}$ 1lymphoproliferative syndromes, ${ }^{12}$ and cases of Hodgkin's lymphomas ${ }^{13}$ have been reported. Recently, a successful clinical therapy of EBV-associated lymphoproliferative deseases with cidofovir has been reported. ${ }^{14}$

[^0]The second generation drug Brivudin (5-[(E)-2-bro-movinyl]-2'-deoxyuridine, BVDU 1) ${ }^{15}$ is a potent and highly selective nud eoside anal ogue-type inhibitor ${ }^{16}$ of the replication of several herpes viruses especially VZV and HSV-1. ${ }^{17}$ The mode of action as inhibitor depends primarily on intracellular conversion of the nucleoside anal ogue into the triphosphate form. Brivudin triphosphate (BVDUTP) can act either as an inhibitor of the cellular DNA polymerase or as an alternate substrate that would lead to the formation of nonsense DNA and would render the DNA more prone to degradation when incorporated in DNA. ${ }^{18}$ As for other known antiherpes drugs, some limitations are known for the use of BVDU. There is a lack of activity during virus Iatency because viral TK is not expressed, drug resistance of the virus has been observed, and BVDU is enzymatically degraded to the nucleobase 5-[(E)-2-bromovinyl]uracil within 2-3 h in the bloodstream. ${ }^{17}$ Additionally, due to altered or deficient enzymes necessary for the phosphorylation to the nucleoside monophosphate and diphosphate, this metabolism is often inefficient and thus the therapeutic activity can be limited. To overcome some of these limitations, the use of pronudeotides that release the nudeotide from a lipophilic precursor after cell entry may be of use. ${ }^{19}$ We devel oped the so-called cycloSal-pronucleotide system. ${ }^{20}$ The basic idea of the cycloSal-approach was a release of the nucleotide by a selective, chemically induced hydrolysis. This concept has been successfully applied to the intracellular delivery of a number of anti-HIV active nucleotides ${ }^{21}$ as well as to acyclovir (ACV). ${ }^{22}$

Herewe report on the synthesis, hydrolytic properties, and biological activities of a series of 3'-unmodified $\mathbf{2 a}-\mathbf{f}$ as well as 3'-O-esterified cycloSal-BVDUMPs 3 and 4. As 3'-modifications, different lipophilic carboxylic acids ( $3 \mathbf{a}-\mathbf{g}$ ) as well as $\alpha$-amino acids ( $4 \mathbf{a}-\mathbf{k}$ ) have been

Scheme 1. Synthetic Pathways to CycloSal-Triesters 2-4a

a Reaction conditions: (a) TBDMSCI, pyridine, rt, 14 h ; (b) carboxylic acids, DMAP, DCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 30 \mathrm{~min}$; (c) TBAF, THF, rt, 4 h ; (d) chlorophosphane, DIPEA, $\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) TBHP, $\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}$ to rt, 1 h ; (f) $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, pyridine, $\mathrm{CH} \mathrm{H}_{3} \mathrm{COOH}$, rt, 5 min; (g) N-Boc-amino acids, DMAP, DCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 30 \mathrm{~min}$; (h) TFA, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 1 \mathrm{~h}$.
introduced. Although EBV produces its own viral thymidine kinase, BVDU $\mathbf{1}$ is antivirally inactive against EBV for unknown reasons. One reason may be that EBV-TK cannot convert BVDU into the monophosphate and thus does not initiate the required phosphorylation. So, our aim was to determine whether the cycloSalconcept is able to broaden the application of BVDU $\mathbf{1}$ against Epstein-Barr-virus (EBV)-caused infections through the intracellular delivery of BVDUMP. ${ }^{5}$ Two reports on pronucleotides of BVDU $\mathbf{1}$ have been published before but both were unsuccessful. ${ }^{23}$ I n contrast, the data presented in this report show pronounced antiEBV activity for some of the cycloSal-BVDUMP triesters. ${ }^{24}$

## Results and Discussion

Chemistry. The prototype cycloSal-triesters 2a-f were available by our previously reported $\mathrm{P}(\mathrm{III})$-route using chl orophosphites prepared from appropriate salicyl alcohols and oxidation by t-BuOOH in DMF/THF 1:1 at $-40^{\circ} \mathrm{C}$ without using protecting groups at the 3 'position. ${ }^{21 b, c, d}$ Alternatively, triesters $\mathbf{2}$ were prepared by 5'-O-phosphitylation of 3'-O-levulinyl (Lev)-BVDU 5 g and subsequent oxidation. Cleavage of the $3^{\prime}-\mathrm{O}-\mathrm{Lev}$ group was achieved by treatment with a solution of
hydrazine hydrate/acetic acid in pyridine to give triesters $\mathbf{2}$ in $31-50 \%$ overall yield. The yields of the latter route were comparable to those obtained via the first variant. For the preparation of both series of 3 '-esterified cycloSal-BVDUMP triesters $\mathbf{3}$ and 4, the acyl group was first introduced into BVDU $\mathbf{1}$ to give $3^{\prime}$-acyl-BVDUs $\mathbf{5 a - t}$. So, BVDU $\mathbf{1}$ was first $5^{\prime}$-O-silylated (TBDMS) in pyridine ( $84 \%$ yield) and then esterified using carboxylic acids, N -Boc-protected L- or D-amino acids after DCC/ DMAP activation. Desilylation ( $2 \%$ TBAF in THF) yielded BVDU derivatives $5 \mathbf{5}-\mathbf{t}$ ( $90-97 \%$ yield of both steps). The cyd oSal moiety was introduced as mentioned before to give triesters $\mathbf{3 a - g}$ and $\mathbf{7 a - m}$ respectively. Alternatively, the reaction was also possible by using the corresponding phosphoramidites. ${ }^{25}$ However, the yields were again comparable to those of the chlorophosphite reaction, and triesters $\mathbf{3 a - g}$ were prepared in $50-60 \%$ yield. Finally, the N -Boc protecting group in $\mathbf{7 a}-\mathbf{m}$ was cleaved by $5 \%$ TFA treatment in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ MeOH 7:3 to give triesters $\mathbf{4 a - m}(50-52 \%$ yield). The reaction sequence is outlined in Scheme 1.
All title compounds 2-4 were isolated as 1:1 diastereomeric mixtures that were inseparable even by means of preparative HPLC. The compounds were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31}$ P NMR spectroscopy as well as

Table 1. Hydrolysis ( $\mathrm{t}_{1 / 2}$ ) in Phosphate Buffers and $\log \mathrm{P}$ Values

| compd | subst X | subst R | hydrolysis ${ }^{\text {a }}$ in phosphate buffer, $37^{\circ} \mathrm{C}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | pH 7.3 ${ }^{\text {b }}$ | pH 6.8 ${ }^{\text {c }}$ | logPe |
| 2a | 5-Cl | H | 0.23 | 0.33 | 1.8 |
| 2b | H | H | 1.52 | 1.79 | 1.5 |
| 2c | 5-OMe | H | 2.32 | 2.75 | 1.6 |
| 2d | 3-Me | H | 6.29 | 7.79 | 1.9 |
| 2 e | 3,5-diMe | H | 8.61 | 12.5 | 2.2 |
| $2 f$ | $3-\mathrm{tBu}$ | H | 20.7 | 33.7 | 2.9 |
| 3a | 3-Me | Ac | 5.81 | 7.60 | 2.2 |
| 3b | 3-Me | Prop | 6.30 | 7.77 | 2.3 |
| 3 c | 3-Me | iBu | 4.89 | 9.00 | 2.4 |
| 3d | 3-Me | Piv | 13.8 | 14.6 | 3.0 |
| 3 e | 3-Me | Hex | 8.10 | 10.9 | 2.6 |
| 3 f | 3-Me | Dec | 14.8 | 16.0 | 2.8 |
| 3 g | 3-Me | Lev | 4.72 | 7.02 | 2.3 |
| 4 a | 3-Me | Gly | 1.76 | 1.92 | -0.8 |
| 4b, $\mathbf{c}$ | 3-Me | Ala | 1.26 | 1.43 | -0.6 |
| 4d, ${ }^{\text {e }}$ | 3-Me | Val | 3.09 | 3.40 | -0.1 |
| 4f,g | 3-Me | Leu | 1.40 | 1.50 | 0.4 |
| 4h,i | 3-Me | Ile | 3.20 | 3.70 | -0.02 |
| 4j,k | 3-Me | Phe | 1.70 | 3.50 | 0.5 |
| 41,m | 3-Me | Pro | 0.32 | 0.35 | -0.4 |
| 1 | - | H | - | - | 0.33 |
| ACV | - | - | - | - | -1.6 |

a Half-lives ( $\mathrm{t}_{1 / 2}$ ) were determined from the decreasing peak of the starting phosphate triester and are the mean of duplicate experiments; values are given in hours (h). ${ }^{\text {b }} 25 \mathrm{mM}$ phosphate buffer, pH 7.3. ${ }^{\text {c }} 25 \mathrm{mM}$ phosphate buffer, pH 6.8. ${ }^{\mathrm{d}} \log \mathrm{P}: \log$ of the partition coefficient determined in n -octanol/water.
mass spectrometry (FAB and ESI) and UV spectroscopy. As expected, the phosphate triesters displayed two closely spaced signals in the ${ }^{31 P}$ NMR spectra. The purity was checked by analytical reversed-phase highperformance liquid chromatography (RP-HPLC). After lyophilization, all phosphate triesters 2-4 were obtained as white fluffy solids.

Determination of Partition Coefficients (log $\mathbf{P}$ values). The partition coefficients (log $P$ value) of the cycloSal-BVDUMPs 2-4 as well as those of the parent nucleoside analogue $\mathbf{1}$ and the reference compound (AZT) were determined in 1-octanol/water by our previously reported HPLC method (Table 1). ${ }^{21 a, 21 d}$ The partition coefficients of the prototype cycloSal-BVDUMPs 2 were up to 370 -fold and those of the 3 '-O-esterified phosphate triesters $\mathbf{3 a - g}$ were up to 470 -fold higher as compared to BVDU $1(\log P=0.33$, Table 1). Compared to AZT $(\log P=0.025),{ }^{21 d}$ which enters mammalian cells by passive, non facilitated diffusion, ${ }^{26}$ BVDUMP triester $\mathbf{2 a - f}$ and $\mathbf{3 a - \mathbf { g }}$ revealed a pronounced increase in lipophilicity. However, one should take into consideration that in cases of very high $\log P$ values the formation of micelles, lipid drops or lipid films could not be excluded. As expected, the lipophilicity was dramatically decreased in the case of the 3'-O-aminoacylmodified cycloSal-BVDUMP triesters 4 due to the protonated amino group. In general, $\log P$ values of the 3'-O-aminoacyl-cycloSal-BVDUMPs 4a-m were lower (up to 12 -fold) than the $\log \mathrm{P}$ value of BVDU with the consequence that triesters 4 were highly water-soluble.

Kinetic Studies. The cycloSal-pronucleotide approach has been designed to release the nucleotides and the masking group selectively by a chemically induced tandem or cascade reaction. In contrast to other prodrug concepts based on enzymatically triggered activation, ${ }^{19}$ our approach involves the successive coupled cleavage of the phenyl and benzyl esters of the cydoSal phos-
phate triester. The degradation pathway has been proven by different methodologies and has been applied to the delivery of various nucleosides, e.g. d4T, ${ }^{21 a}$ dd(4)A, ${ }^{21 \mathrm{~b}} \mathrm{~F}$-ara/ribo-ddA, ${ }^{21 \mathrm{c}} \mathrm{CBV} /$ abacavir, ${ }^{21 \mathrm{e}}$ and ACV . ${ }^{22}$ The intracellular delivery of the corresponding nudeotides has been demonstrated by the observed biol ogical activity in different cell lines and even in thymidine kinase-deficient CEM cells or virus strains. However, all of the above-mentioned nucleoside anal ogues did not possess a further nucleophilic group in the vicinity of the 5'-phosphate group. In BVDU, a 3'-hydroxyl group is present in the glycon. Assuming an intramolecular attack at the phosphorus center, this would finally lead to the formation of $3^{\prime}, 5^{\prime}$-cyclic BVDUMP. Such a situation has already been observed in the case of the antiHSV active penciclovir (PCV): hydrolysis led exclusively to the formation of the cydic phosphate diester. ${ }^{27}$ However, in penciclovir the intramolecular nucleophile is a primary hydroxyl and thus more reactive than the secondary $3^{\prime}$-hydroxyl in BVDU. So, the question arose if the $3^{\prime}$-hydroxyl group is able to compete with the intermolecular ring opening reaction of the cycloSalmoiety.
The hydrolysis behavior of cycloSal-BVDUMPs 2-4 was examined in aqueous phosphate buffer at two pH values, in P3HR-1 cell extract and in human sera. Hydrolysis products were identified by means of HPLC using coinjections with independently synthesized reference compounds, ESI-mass spectrometry, and ${ }^{31}$ P NMR spectroscopy. The half-lives were determined by integration of the decreasing peaks of the triesters versus time.
The half-lives were determined in phosphate buffers and are summarized in Table 1. First of all, all prototype cycl oSal-BVDUMP triesters $\mathbf{2}$ sel ectively hydrol yzed in both buffers to give BVDUMP and the corresponding salicyl alcohol (Scheme 2). It was unambiguously shown by means of analytical HPLC, ESI, and ${ }^{31}$ P NMR that no $3^{\prime}, 5^{\prime}-$ cyclic BVDUMP (cBVDUMP) has been formed. Therefore, the possible concurrent intramolecular process did not take place in contrast to the cycloSalPCVMP case mentioned before. This may be attributed (i) to the lower reactivity of the secondary alcohol function and (ii) to the attachment of the hydroxyl group in the ring scaffold. In contrast, the hydroxyl group in PCV is part of a flexible acyclic structure.
Second, as in the case of the cycloSal-triester of d4T and dd(4)A, a clear correlation between hydrolytic stability and the substituents on the aromatic ring was observed for compounds $\mathbf{2 a}-\mathbf{f}$. In both phosphate buffers, the half-lives increased commensurate with the electron-donating ability of the substituent. In comparison, cycloSal-BVDUMPs hydrolyzed about 3-fold faster as compared to the identically substituted cycloSald4TMP, e. g., 3-MecycloSal-d4TMP showed a $\mathrm{t}_{1 / 2}$ value of 19h at pH 7.3 while 3-Me-cycloSal-BVDUMP 2d showed a $\mathrm{t}_{1 / 2}$ value of 6 h . As expected, the hydrolysis rate was dependent on the pH -value of the buffer (Table 1). Phosphate triesters $\mathbf{2 d}-\mathbf{f}$ showed in slightly acidic (pH 6.8) as well as in slightly basic phosphate buffer (pH 7.3) stability properties that should be high enough to allow a sufficient cellular uptake. However, compounds $\mathbf{2 a}$ - $\mathbf{c}$ hydrolyzed presumably too fast to be

Scheme 2. Major Hydrolysis Pathways of CycloSal-Phosphate Triesters


taken up efficiently. This may be deduced from earlier work from our laboratory.

Interestingly, a marked difference in the hydrolysis pathway between the 3'-esterified cycloSal-triesters 3 and 4 was observed. As expected, hydrolysis of 3'-O-acyl modified BVDUMPs 3 led to the cleavage of the cycloSal-mask releasing 5'-phosphorylated 3'-O-acylBVDUMP (Scheme 2). No cleavage of the 3'-ester to give the prototype $\mathbf{2 d}$ was observed by means of HPLC. The half-lives of 3'-O-acyl-modified BVDUMPs 3 showed a correlation between the hydrolysis behavior and the lipophilicity: the morelipophilic the carboxylic acid the more stable the phosphate triester. This may be due to the interaction of the attacking hydroxide with the highly lipophilic 3'-O-acyl residue or to the formation of lipid structures such as micelles that limits the accessibility of the phosphate group. If a further polar carbonyl functionality is introduced as in the 3'-O-Lev derivative $\mathbf{3 g}$, the lipophilicity and the half-life decreased. It is important to note that the 3'-ester group in 3'-O-acyl-BVDUMP was stable in all cases to further hydrolysis to give BVDUMP. So, chemical hydrolysis of these compounds led to a dead end.

In contrast, the $3^{\prime}-\alpha$-aminoacyl bearing cycloSalBVDUMPs 4 displayed markedly lower half-lives. Cy-cloSal-BVDUMPs 4 hydrolyzed in both phosphate buffers in the range of $0.3-3.7 \mathrm{~h}$. Moreover, in contrast to the 3'-O-acyl triesters 3, HPLC analysis proved that in compounds 4 first the aminoacyl residue was cleaved, leading to the prototype 3-methyl-cycloSal-BVDUMP 2d. In a further hydrolysis step the cycloSal-moiety was cleaved to give finally BVDUMP and 3-methyl-saligenin. It should be added that no influence of the C $\alpha$-configuration in the aminoacyl group to the hydrolysis rate was observed. The formed prototype triester 2d hydrolyzed with the same half-life as before. The unexpected lability of the 3'-aminoacyl group may be attributed to a protonation of the amino group (until $\sim \mathrm{pH} 9$ ) and thus formation of an ammonium group at pH 6.8 or 7.3. This resulting acceptor group destabilizes the ester bond by withdrawing electron density from the ester residue.

Next, triesters 2-4 were studied in phosphate buffer containing pig liver esterase (PLE). In contrast to the situation above, it was shown that the 3'-acyl group in triesters 3 was cleaved rapidly to give the prototype
triester 2d (data not shown). ${ }^{28}$ Triester 2d hydrolyzed with the same rate as in the absence of PLE , indicating that PLE has no effect on the delivery of BVDUMP. 3'Aminoacyl triesters 4 led again first to the formation of prototype 2d and then to BVDUMP without any enzymatic contribution.

The hydrolytic behavior of cycloSal-BVDUMP triesters 2-4 was further studied in P3HR-1 cell extracts. This cell type was used for the antiviral evaluation against EBV. Hydrolysis studies in the extracts were done at $37{ }^{\circ} \mathrm{C}$ and followed for 8 h only in order to exclude extract degradation with the risk of changing the enzyme content. Incubations were stopped by addition of a solution of acidic methanol, and products were analyzed by means of HPLC.

Again, a clear correlation between hydrolytic stability and the substituents on the aromatic ring was observed for compounds 2. As an example, the half-live of 3-methyl-cycloSal-BVDUMP 2d was determined. The half-life was found to be 8 h and is therefore in the same range as found in phosphate buffer, pH 7.3. Consequently, no indication for an enzymatic contribution was found and so hydrolysis in cell extract is purely chemically driven. As in the phosphate buffer, triesters 2 hydrolyzed to yield BVDUMP. The latter was subsequently dephosphorylated to BVDU 1 by phosphatases/ nucleosidases present in the extracts. This dephosphorylation has been proven in a separate assay: BVDUMP was metabolized to BVDU to an extent of $29 \%$ within 4 h. Therefore, one may conclude that BVDU will not arise directly from the triester. No formation of 5-[(E)-2bromovinyl]uracil (BVU) was detected in the extracts.

The hydrolysis of the 3'-O-acyl modified derivatives 3 exhibited a clear difference with respect to the attached acid. For the 3'-O-Ac-, 3'-O-Hex-, 3'-O-Dec-, and 3'-O-Lev derivatives $\mathbf{3 a}, \mathbf{3 e -} \mathbf{- g}$, respectively, enzymatic deesterification into the prototype triester 2d was the one hydrolysis product. Triester 2d was then further cleaved to give BVDUMP. However, also considerable amounts of 3'-acyl-BVDUMP were formed (Table 2). Thus, in contrast to the PLE and phosphate buffer studies, the degradation in cell extracts is not selective. M oreover, derivatives 3b-d hydrolyzed predominantly to give 3'-O-acyl-BVDUMP. Interestingly, as in the studies with PLE, 3'-O-acyl-BVDUMP was not further metabolized to BVDUMP in the cell extracts.

Table 2. Products after 8 h Incubation Time in P3HR-1 Cell Extract

| compd | subst X | subst R | educt | prototype | 3'-OR-BVDUMP | BVDUMP | BVDU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2a | $5-\mathrm{Cl}$ | H | - | - | - | 59 | 41 |
| 2b | H | H | - | - | - | 51 | 49 |
| 2c | 5-OMe | H | 34 | - | - | 42 | 24 |
| 2d | 3-Me | H | 51 | - | - | 31 | 18 |
| 2e | 3,5-diMe | H | 63 | - | - | 22 | 15 |
| 2 f | $3-\mathrm{tBu}$ | H | 90 | - | - | 9 | <1 |
| 3a | 3-Me | Ac | 29 | 29 | 16 | 16 | 10 |
| 3b | 3-Me | Prop | 77 | 4 | 14 | 3 | 2 |
| 3c | 3-Me | iBu | 45 | 10 | 35 | 7 | 3 |
| 3d | 3-Me | Piv | 82 | 2 | 14 | 1 | $<1$ |
| 3e | 3-Me | Hex | 77 | 8 | 3 | 7 | 5 |
| $3 f$ | 3-Me | Dec | 84 | 6 | 3 | 5 | 2 |
| 3 g | 3-Me | Lev | 19 | 30 | 11 | 23 | 17 |
| 4 a | 3-Me | Gly | - | 49 | - | 32 | 19 |
| 4b, ${ }^{\text {c }}$ | 3-Me | Ala | - | 44 | - | 31 | 25 |
| 4d,e | 3-Me | Val | - | 44 | - | 32 | 24 |
| 4f,g | 3-Me | Leu | - | 40 | - | 34 | 26 |
| 4h,i | 3-Me | $1 l e$ | - | 43 | - | 33 | 24 |
| 4j,k | 3-Me | Phe | - | 43 | - | 32 | 25 |
| 41,m | 3-Me | Pro | - | 43 | - | 30 | 27 |

The situation was significantly different for the triesters 4. As in the phosphate buffers, all triesters are loosing rapidly the 3'-O-aminoacyl group to yield prototype triester 2d as major product. From the half-lives and the product distribution it can be deduced that the 3'-O-aminoacyl esters were hydrolyzed chemically. No significant difference between the natural L-configured triester and the d-configurated could be detected. In the case of triesters 4, no trace of 3'-O-aminoacyl-BVDUMP was found.

To study the stability of the triester 2-4 in human serum, compounds were incubated in $10 \%$ human serum in phosphate buffer, pH 6.8. As summarized in Table 1, the half-lives of a few representative examples were found to be in the range as in the pure phosphate buffers. Again, this clearly points to a chemi cally driven cleavage of the triesters. As in the extracts, the main products of triesters $\mathbf{2}$ and $\mathbf{4}$ were again BVDUMP and BVDU, while triesters $\mathbf{3}$ led mainly to the formation of 3'-O-acyl-BVDUMP.

Antiviral Evaluation. The successful thymidine kinase bypass by cycloSal-d4TMP ${ }^{21}$ and cycloSalACVMP phosphate triesters ${ }^{22}$ has been shown before. These results demonstrated (i) a pronounced structurebioactivity correlation with respect to the substituents on the cycloSal moiety, (ii) the successful membrane penetration of the pronucleotide, (iii) the efficient intracellular delivery of the nucleotide, and (iv) the complete independence from TK. ${ }^{29}$ In sharp contrast, the corresponding cycloSal-AZTMP derivatives lost nearly all the antiviral activity observed in wild-type CEM/O cells ${ }^{21 d, 30}$ when tested in TK-deficient CEM cells. ${ }^{29}$ The parent nucleoside BVDU 1, as well as the cycloSal phosphate triesters 2-4 were evaluated for their ability to inhibit the replication of EBV in human lymphoblastoid P3HR-1 cells. The antiviral activity of the dinically used nucleoside analogue acyclovir (ACV) is given for comparison. The results obtained are displayed in Table 3.

As expected, the parent nucleoside BVDU 1 was devoid of any antiviral activity in the EBV infected P3HR-1 cell system. M ost strikingly, the 3'-unmodified cycloSal-BVDUMPs 2a-f showed pronounced anti-EBV activity in the cell system. Most active compounds

Table 3. Anti-EBV Activity and Selective Indices of
CycloSal-Triesters 2-4, as well as BVDU 1 and ACV

| compd | subst X | subst R | $\mathrm{EC}_{50}(\mu \mathrm{M})^{\mathrm{a}}$ | $\mathrm{CC}_{50}(\mu \mathrm{M})^{\text {b }}$ | $\mathrm{SI}^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2a | $5-\mathrm{Cl}$ | H | $25.8 \pm 7.15$ | 80 | 3.1 |
| 2b | H | H | $12.3 \pm 6.34$ | 92 | 7.5 |
| 2c | $5-\mathrm{OMe}$ | H | $3.35 \pm 3.76$ | 137 | 41 |
| 2d | 3-Me | H | $4.11 \pm 0.81$ | 122 | 30 |
| 2e | 3,5-diMe | H | $14.4 \pm 9.18$ | 143 | 9.9 |
| 2 f | $3-\mathrm{tBu}$ | H | $32.5 \pm 8.58$ | 80 | 2.5 |
| 3a | 3-Me | Ac | >89.7 | 109 | - |
| 3b | 3-Me | Prop | > 175 | 282 | - |
| 3c | 3-Me | iBu | > 171 | 104 | - |
| 3d | 3-Me | Piv | >83.4 | 57 | - |
| 3e | 3-Me | Hex | > 163 | > 326 | - |
| $3 f$ | 3-Me | Dec | > 149 | > 299 | - |
| 3 g | 3-Me | Lev | > 163 | 152 | - |
| 4a | 3-Me | Gly | $43.5 \pm 30.1$ | 93 | 2.1 |
| 4b | 3-Me | L-Ala | $35.3 \pm 11.6$ | 92 | 2.6 |
| 4c | 3-Me | d-Ala | $25.3 \pm 13.7$ | 38 | 1.5 |
| 4d | 3-Me | L-Val | $81.8 \pm 31.3$ | 47 | 0.6 |
| 4 e | 3-Me | D-Val | > 137 | 80 | - |
| 4 f | 3-Me | L-Leu | $23.0 \pm 9.06$ | 45 | 2.0 |
| 49 | 3-Me | D-Leu | > 135 | 65 | - |
| 4h | 3-Me | L-Ile | > 135 | 78 | - |
| 4i | 3-Me | d-lle | > 135 | 37 | - |
| 4j | 3-Me | L-Phe | $\geq 129$ | 35 | - |
| 4k | 3-Me | d-Phe | $46.5 \pm 19.3$ | 66 | 1.4 |
| 41 | 3-Me | L-Pro | $\geq 138$ | 36 | - |
| 4 m | 3-Me | D-Pro | $\geq 138$ | 38 | - |
| 1 |  |  | > 300 | 225 | - |
| ACV |  |  | $6.75 \pm 2.62$ | 392 | 58 |

a $50 \%$ effective concentration blocking EBV-DNA synthesis. ${ }^{\text {b }} 50 \%$ cytotoxic concentration. ${ }^{\text {c S Selectivity index }=} \mathrm{CC}_{50}(\mu \mathrm{M}) / \mathrm{EC}_{50}$ ( $\mu \mathrm{M}$ ).
against EBV were 5-methoxy-cycloSal-BVDUMP 2c ( $>90$-fold more active as compared to BVDU 1) and 3-methyl-cycloSal-BVDUMP 2d (>73-fold more active). Both compounds are at least as active as the reference compound ACV. Interestingly, as in our previously reported results on cycloSal-d4TMP triesters, we noticed a clear correlation between antiviral activity, the hydrolysis rates and the substituents in the cycloSal moiety. ${ }^{20 a}$
In contrast to triesters 2, all $3^{\prime}$-ester derivatives $\mathbf{3}$ proved to be antivirally inactive. At least for compounds $\mathbf{3 a}$ and $\mathbf{3 g}$ this failure in antiviral activity is somewhat surprising because in the cell extract studies both compounds released the antivirally active triester 2d in some amounts as well as BVDUMP. However, the
formed BVDUMP amounts from both triesters 3a,g were found to be markedly lower as compared to the prototype triesters $\mathbf{2 c}$ cd. In addition, both led also to the formation of 3'-O-acyl-BVDUMP in (nearly) comparable amounts. Compounds bearing branched or highly lipophilic ester groups led dominantly to the corresponding 3'-O-acyl-BVDUMP derivatives or proved to be hydrolytically too stable in order to release BVDUMP in a reasonable amount (Table 2, $<7 \%$ BVDUMP in 8 h).

Quite intriguing was the behavior of the $\alpha$-aminoacyl bearing triesters 4. Although all compounds completely lost their aminoacyl residue in the cell extracts to yield the prototype triester 2d, only four triesters showed some antiviral effect in the assay. The most active compound was 3-methyl-cycloSal-(3'-Leu)BVDUMP $4 \mathbf{f}$ having the natural L-configuration. However, this compound was found to be 5 -fold less active than the prototype 2d (Table 3). In contrast, the corresponding d-Leu triester $\mathbf{4 g}$ was completely inactive. To some extend this is also valid for the $3^{\prime}$-Ala triesters $\mathbf{4 b}$ and 4c: here both L- or the D-configured triesters showed some antiviral potential. Moreover, the glycine and the o-Phe derivatives $\mathbf{4 a}$ and $\mathbf{4 k}$ showed some anti-EBV activity although 10 -fold lower as compared to triester 2d. It is interesting to note that the L-Phe triester 4j was devoid of any antiviral potency. The reason for this unexpected effect of the stereochemistry remains unknown and cannot be correlated with the results of the chemical hydrolysis and the cell extract studies. The same stands for the reasons for the entire inactivity of both diastereomers of the amino acids Val, IIe, and Pro. Assuming that the results obtained from the cell extract studies reflect at least somehow the intracellular medium, one explanation may be a strong impact of the attached amino acid on the cellular uptake (active instead of passive?) of triesters 4. Further studies have to be done in order to shed light on this unexpected outcome of the antiviral tests. Moreover, it is interesting to note that the aminoacyl derivatives 4 showed 2 - to 3 -fold lower $\mathrm{CC}_{50}$ values as compared to the prototype triesters $\mathbf{2}$ for some unknown reasons.
Although it is known that EBV has a thymidine kinase, the above data show that just the delivery of BVDUMP is sufficient to convert BVDU into an antiEBV active drug. Consequently, EBV-TK is obviously not able to phosphorylate BVDU. It cannot be deduced from the data, if further metabolism of BVDUMP into its triphosphate is absolutely necessary for the biol ogical activity. Possibly, BVDUMP itself is responsible for the biological effect. Moreover, the complete inactivity of the 3 3'ester derivatives in contrast to the prototype triesters 2 demonstrates again that a free $3^{\prime}$-hydroxyl group is essential for the expression of the antiviral activity. This conclusion is further confirmed by the complete inactivity of 3-methyl-cycloSal-(3'-O-methyl)BVDUMP (data not shown). ${ }^{28}$ As expected, this triester released the 3'-O-methyl ether of BVDUMP in the chemical hydrolysis with a half-life of 6.5 h . However, the ether linkage proved to be entirely stable.

## Conclusion

In summary, from the hydrolytic and antiviral data disclosed here, the use of prototype cycloSal-BVDUMPs

2 provide an efficient method to deliver the nucleoside monophosphate BVDUMP intracellularly. The delivery mechanism is the same as reported before, e. g., for cycloSal-d4TMP, ${ }^{21 a}$ and thus proving that an intramolecular concurrent reaction of the secondary alcohol did not take place. Moreover, as a consequence, the antiEBV inactive BVDU 1 was converted into a bioactive compound. The anti-EBV potency was found to be comparable or even higher than that of ACV. The point that the delivery of BVDUMP is sufficient to convert BVDU into a bioactive compound showed that the mechanism of action of the cycloSal compounds is based again on a successful bypass of a cellular or of a EBV TK. The antiviral evaluation proved that esterification of the 3'-hydroxy group by simple carboxylic acids abolished all biological activity for unknown reasons. Although delivery of BVDUMP from $3^{\prime}$-aminoacyl cy-cloSal-BVDUMPs 4 was clearly shown in chemical hydrolysis and cell extract studies, only a few proved to be antivirally active. The most active compound was the L-leucine derivative $\mathbf{4 f}$. The advantage of the $\alpha$-amino acid bearing compounds was their higher solubility in aqueous media. Finally, to the best of our knowledge, the work reported here represents the first example of the application of a pronucleotide approach to a nucleoside anal ogue possessing a 3'-hydroxyl group with the result of a considerable improvement of antiviral activity.

## Experimental Section

All experiments involving water-sensitive compounds were conducted under scrupulously dry conditions (argon atmosphere). Sol vents: Anhydrous methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, anhydrous tetrahydrofurane (THF), and anhydrous acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were obtained in a Sure/Seal bottle from Fluka and stored over $4 \AA$ A molecular sieves; ethyl acetate, methylene chloride, and methanol employed in chromatography were distilled before use. Ethyldi isopropylamine (DIPEA) was distilled from Na prior to use. The solvents for the HPLC were obtained from Merck (acetonitrile, HPLC grade). I on pairing buffer solution was prepared by mixing 6.6 mL of tetrabutyIammonium hydroxide with 1000 mL of water. The pH -value adjusted to 3.8 by adding concentrated phosphoric acid (buffer I). To 60 mL of buffer I solution was added 1000 mL of water (buffer II). Evaporation of solvents was carried out on a rotary evaporator under reduced pressure or using a high-vacuum pump. Chromatography: Chromatotron (H arrison Research 7924), silica gel $60_{\text {pf }}$ (Merck, "gipshaltig"); UV detection at 254 nm. TLC: analytical thin-layer chromatography was performed on Merck precoated aluminum plates $60 \mathrm{~F}_{254}$ with a $0.2-\mathrm{mm}$ layer of silica gel containing a fluorescence indicator; sugar-containing compounds were visualized with the sugar spray reagent ( 0.5 mL of 4-methoxybenzaldehyde, 9 mL of ethanol, 0.5 mL of concentrated sulfuric acid, and 0.1 mL of glacial acectic acid) by heating with a fan or a hot plate. HPLC: (Merck-Hitachi) analytical HPLC, LiChroCART 250-3 with LiChrospher 100 RP-18 endcapped ( $5 \mu \mathrm{~m}$ ), gradient I 12$80 \% \mathrm{CH}_{3} \mathrm{CN}(0-20 \mathrm{~min}), 12 \% \mathrm{CH}_{3} \mathrm{CN}(20-35 \mathrm{~min})$, flow 0.6 mL , UV detection at 250 nm ; gradient II $8-100 \% \mathrm{CH}_{3} \mathrm{CN}(0-$ 22 min ), $100 \% \mathrm{CH}_{3} \mathrm{CN}(22-27 \mathrm{~min}), 8 \% \mathrm{CH}_{3} \mathrm{CN}(27-33 \mathrm{~min})$, flow 0.6 mL , UV detection at 250 nm ; gradient III same as II, instead of water the ion pairing buffer solution was used. NMR spectra were recorded using ( ${ }^{1} \mathrm{H}$ NMR) Bruker AC 250 at 250 MHz, Bruker WM 400 at 400 MHz , Bruker AMX 400 at 400 MHz or Bruker DMX 500 at $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right.$ or DMSO as internal standard); ( ${ }^{13} \mathrm{C}$ NMR) Bruker WM 400 at 101 MHz , Bruker AMX 400 at 101 MHz or Bruker DMX 500 at 123 MHz ( $\mathrm{CDCl}_{3}$ or DMSO as internal standard); ( ${ }^{(11 P}$ NMR) Bruker AMX 400 at 162 MHz or Bruker DMX 500 at $202 \mathrm{MHz}\left(\mathrm{H}_{3}-\right.$ $\mathrm{PO}_{4}$ as external standard). All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts
$(\delta)$ are quoted in parts per million (ppm) downfield from tetramethylsilane, $\left(\mathrm{CD}_{3}\right)\left(\mathrm{CD}_{2} \mathrm{H}\right) \mathrm{SO}$ being set at $\delta_{\mathrm{H}} 2.49$ as a reference. ${ }^{31}$ P NMR chemical shifts are quoted in ppm using $\mathrm{H}_{3} \mathrm{PO}_{4}$ as external reference. The spectra were recorded at room temperature, and all ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were recorded in proton-decoupled mode. UV spectra weretaken with a Varian Cary 1E UVN is spectrometer. Infrared spectra were recorded with a Perkin-Elmer 1600 Series FT-IR or a ATI Mattson Genesis Series FT-IR spectrometer in KBr pellets. Mass spectra were obtained with a Finnigan el ectrospray MAT 95 Trap XL (ESI) or a VG Analytical VG/70-250 F spectrometer (FAB, matrix was m-nitrobenzyl alcohol). The test compounds were isolated as mixtures of diastereomers arising from the mixed stereochemistry at the phosphate center. The resulting lyophilized triesters did not gave useful microanalytical data most probably due to incomplete combustion of the compound, but were found to be pure by HPLC analysis, high-field multinuclear NMR spectroscopy, and mass spectroscopy.

5'-O-tert-Butyldimethylsilyl-(E )-5-(2-bromovinyl)-2'deoxyuridine. To a solution of BVDU ( 3.00 mmol ) in 25 mL of pyridine was added TBDMSCI ( 3.75 mmol ), and the mixture was stirred for 14 h at room temperature. Then 2.0 mL MeOH were added, and the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed twice with water, and dried over sodium sulfate, and again the solvent was removed under reduced pressure. The residues were purified by chromatography on silica gel plates on a chromatotron using a gradient of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. yield: $84 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ ) $\delta 11.60$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ); 7.78 (s, 1H, H6); 7.26 (d, 1H, H8); 6.81 (d, 1H, H7); 6.10 (t, 1H, H1'); $5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}) ; 4.19-4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right) ; 3.76-3.74(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H} 4^{\prime}, \mathrm{H}^{\prime}$ ); 2.20-2.09 (m, 2H, H2'); 0.86 ( $\mathrm{s}, 9 \mathrm{H}, \mathrm{H} 3-$ TBDMS); 0.05 (s, 6H, H1-TBDMS); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d 6 ) $\delta 161.86$ (C4); 149.41 (C2); 139.43 (C6); 130.09 (C7); 109.91 (C5); 107.11 (C8); 87.38 (C4'); 84.98 (C1'); 70.39 (C3'); 63.34 (C2'); 26.01 (C3-TBDMS); 18.27 (C2-TBDMS); -5.15 (C1TBDMS); MS (FAB) m/z $447.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}$ $251.0 \mathrm{~nm}, 295.0 \mathrm{~nm} ; \lambda_{\text {min }} 216.0 \mathrm{~nm}, 270.0 \mathrm{~nm} ; \mathrm{R}_{\mathrm{f}}$ value 0.53 ( $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ).

General Procedure for the Preparation of 3'-Esterified BVDUs 5a-t. To a solution of 5'-TBDMS-BVDU ( 0.33 $\mathrm{mmol})$, (dimethylamino)pyridine ( 0.66 mmol ), and the carboxylic acid ( 0.37 mmol ) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dicyclohexyl carbodiimide ( 0.37 mmol ) at room temperature. The reaction mixture was stirred for 30 min (TLC analysis) and filtered, and the solvent was removed under reduced pressure. The residues were purified by chromatography on silica gel plates on a chromatotron using a gradient of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Product containing fractions were combined and evaporated. To a solution of the residue in THF was added 0.5 mL of a 1 M tetrabutylammonium fluoride solution in THF. The mixture was stirred for 4 h at room temperature. Then, the solvent was removed under reduced pressure. The residues were purified by chromatography on silica gel plates on a chromatotron using a gradient of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield compounds $\mathbf{5 a - t}$.
(E)-5-(2-Bromovinyl)-3'-O-acetyl-2-deoxyuridine 5a: yield: $87 \%$; ${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; 7.90 (s, 1H, H6); 7.38 (d, 1H, H8); 6.68 (d, 1H, H 7); 6.32 (dd, 1H, H $1^{\prime}$ ); 5.39-5.33 (m, 1H, H3'); 4.15 (dt, 1H, H4'); 3.993.97 (m, 2H, H5'); 2.49 (ddd, 1H, H2"); 2.35 (ddd, $1 \mathrm{H}, \mathrm{H}^{\prime}$ ); 2.12 (s, 3H, CH3 ); ${ }^{13} \mathrm{C}$ NMR ( $63 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 170.69 (C1-Ac); 160.86 (C4); 149.01 (C2); 137.94 (C6); 128.23 (C7); 111.72 (C5); 109.98 (C8); 85.95 (C4'); 85.34 (C1'); 74.54 (C3'); 62.55 (C5'); 38.00 (C2'); 20.97 (C2-Ac); UV ( $\mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\max } 251.0 \mathrm{~nm}, 287.0$ $\mathrm{nm} ; \lambda_{\text {min }} 214.0 \mathrm{~nm} ; 268.0 \mathrm{~nm} ; \mathrm{R}_{\mathrm{f}}$ value $0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 9:1).
(E)-5-(2-Bromovinyl)-3'-O-propionyl-2'-deoxyuridine 5b: yield $97 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 8.07$ (s, 1 H , H6); 7.24 (d, $1 \mathrm{H}, \mathrm{H} 8$ ); 6.83 (d, 1H, H7); 6.14 (dd, 1H, H1 ${ }^{\prime}$ ); 5.35-5.10 (m, 2H, H3', OH ); 4.00 (s, 1H, H4'); 3.66-3.58 (m, 2H, H5'); 2.35-2.27 (m, 4H, H2', H2-Prop); 1.02 (t, 3H, H3Prop); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 173.52$ (C1-Prop); 161.84 (C4); 149.52 (C2); 139.36 (C6); 129.98 (C7); 110.26 (C5);
107.07 (C8); 85.27 (C4'); 84.71 (C1'); 74.63 (C3'); 61.42 (C5 $\left.{ }^{\prime}\right)$; 37.30 (C2'); 27.03 (C2-Prop); 9.03 (C3-Prop); $\mathrm{R}_{\mathrm{f}}$ value 0.59 ( $\mathrm{CH}_{2-}$ $\left.\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'-0-i-butyryl-2'-deoxyuridine 5c: yield $98 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6$ ); 7.24 (d, 1H, H8); 6.66 (d, 1H, H7); 6.25 (dd, 1H, H1); 5.245.22 (m, 1H, H3'); 4.01 (dt, H4'); 3.80-3.78 (m, 2H, H5'); 2.49 (sept, 1H, H2-Iso); 2.35 (ddd, 1H, H2"); 2.23 (ddd, 1H, H2'); 1.10 (d, 6H, CH3); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 177.01$ (C1Iso); 161.81 (C4); 149.49 (C2); 138.07 (C6); 128.34 (C7); 111.53 (C5); 108.94 (C8); 85.69 (C4'); 85.25 (C1'); 74.85 (C3'); 61.73 (C5'); 38.07 (C2'); 33.69 (C2-I so); 18.52 (C3-I so); 18.50 (C3-I so). $\mathrm{R}_{\mathrm{f}}$ value $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'-O-pivaloyl-2'deoxyuridine 5d: yield 77\%; ${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.12$ (s, $1 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}$ ); 7.93 (s, 1H, H6); 7.39; 7.33 (d, 1H, H8); 6.71-6.66 (d, 1H, H 7); 6.31 (dd, 1H, H 1'); 5.37-5.32 (m, 1H, H3'); 4.08 (dt, H4'); 3.98 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 5^{\prime}$ ); 2.49 (ddd, 1H, H2"); 2.37 (ddd, 1H, H2'); 1.23 (s, $9 \mathrm{H}, 3 \mathrm{xCH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $63 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 178.44$ (C1-Piv); 161.26 (C4); 149.20 (C2); 138.08 (C6); 128.23 (C7); 111.69 (C5); 109.89 (C8); 85.96 (C4'); 85.60 (C1'); 74.32 (C3'); 62.49 (C5'); 38.68 (C2-Piv); 38.00 (C2'); 26.99 (C3-Piv); Rf value 0.68 ( $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ).
(E)-5-(2-Bromovinyl)-3'-O-hexanoyl-2'-deoxyuridine 5e: yield $65 \%$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}^{2}$ d $) ~ \delta 11.60(\mathrm{~s}, 1 \mathrm{H}$, NH-BVU); 8.06 (s, 1H, H6); 7.24 (d, 1H, H8); 6.83 (d, 1H, H7); 6.14 (t, 1H, H1'); 5.22 (t, 2H, H3', OH ); 3.99 (s, 1H, H4'); 3.683.61 (m, 2H, H5'); 2.34-2.26 (m, 4H, H2', H2-Hex); 1.54 (quin, 2H, H3-Hex); 1.28-1.25 (m, 4H, H4-Hex, H5-Hex); 0.85 (t, 3H, H6-Hex); ${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 172.75$ (C1-Hex); 161.80 (C4); 149.47 (C2); 139.33 (C6); 129.96 (C7); 110.21 (C5); 107.00 (C8); 85.19 (C4'); 84.64 (C1'); 74.52 (C3'); 61.37 (C5'); 37.24 (C2'); 33.58 (C2-Hex); 30.79 (C4-H ex); 24.19 (С3-H ex); 21.96 (C5-Hex); 13.97 (C6-Hex); $\mathrm{R}_{\mathrm{f}}$ value $0.68\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 9:1).
(E )-5-(2-Bromovinyl)-3'-O-decanoyl-2'-deoxyuridine 5f: yield 87\%; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 11.61$ ( $\mathrm{s}, 1 \mathrm{H}$, NH-BVU); 8.06 (s, 1H, H6); 7.24 (d, 1H, H8); 6.83 (d, 1H, H 7); 6.14 (dd, 1H, H 1'); 5.25-5.20 (m, 2H, H3', OH ); 3.99 (dt, 1H, H4'); 3.70-3.57 (m, 2H, H5'); 2.37-2.22 (m, 4H, H2', H2-Dec); 1.55-1.45 (m, 2H, H3-Dec); 1.30-1.20 (m, 12H, H4-Dec-H9Dec); 0.85 (t, 3H, H10-Dec); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}$ ) $\delta$ 172.78 (C1-Dec); 161.83 (C4); 149.50 (C2); 139.35 (C6); 129.98 (C7); 110.24 (C5); 107.03 (C8); 85.23 (C4'); 84.67 (C1'); 74.54 (C3'); 61.39 (C5'); 37.26 (C2'); 33.64 (C2-Dec); 31.47 (C3-Dec); 29.04; 28.85; 28.61 (C4-Dec-C8-Dec); 22.31 (C9-Dec); 14.15 (C10-Dec); R f value $0.69\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'-O-levulinyl-2'-deoxyuridine 5g: yield $88 \%$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }^{2}$ ) $\delta 8.06$ (s, 1H, H6); 7.24 (d, 1H, H8); 6.83 (d, 1H, H7); 6.13 (dd, 1H, H1'); 5.22 (s, 1H, OH ); 5.19 (dt, 1H , H3'); 3.98 (dt, 1H, H4'); 3.61 (m, 2H, H5'); 2.72 (t, 2H, H2-Lev); 2.48 (m, 2H, H3-Lev); 2.31 (ddd, 1H, H2"); 2.25 (ddd, 1H, H2'); 2.09 (s, 3H, H5-Lev); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 207.08$ (C4-Lev); 172.17 (C1-Lev); 161.81 (C4); 149.49 (C2); 139.35 (C6); 129.95 (C7); 110.21 (C5); 106.99 (C8); 85.09 (C4'); 84.65 (C1'); 74.75 (C3'); 61.36 (C5'); 37.62 (C3-Lev); 37.11 (C2'); 29.70 (C5-Lev); 27.92 (C2-Lev); $\mathrm{R}_{\mathrm{f}}$ value $0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-glycinyl)-2'deoxyuridine 5h: yield 63\%; ${ }^{1 \mathrm{H}}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.06$ (s, 1H, H6); 7.24 (d, 2H, H8, NH-Gly); 6.83 (d, 1H, H7); 6.16 (t, 1H, H1 ${ }^{\prime}$ ) $5.35-5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}, \mathrm{OH}\right) ; 4.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4^{\prime}\right)$; 3.753.55 (m, 4H, H5', H2-Gly); 2.36-2.23 (m, 2H, H2'); 1.38 (s, 9H, H3-Boc); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ${ }_{6}$ ) $\delta 170.21$ (C1Gly); 161.82 (C4); 156.09 (C1-Boc); 149.48 (C2); 139.32 (C6); 129.97 (C7); 110.25 (C5); 107.03 (C8); 85.12 (C4'); 84.62 (C1'); 78.54 (C2-Boc); 75.21 (C3'); 61.36 (C5'); 42.38 (C2-Gly); 37.16 (C2'); 28.33 (C3-Boc); $\mathrm{R}_{\mathrm{f}}$ value $0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'-O-(N-Boc-L-alaninyl)-2'-deoxyuridine 5 i: yield $69 \%$; ${ }^{1}$ H NMR ( 400 MHz , DMSO-d 6 ) $\delta 11.62$ (s, 1H, NH-BVU); 8.06 (s, 1H, H6); 7.37 (d, 1H, NH-Ala); 7.24 (d, 1H, H8); 6.83 (d, 1H, H 7); 6.17 (t, 1H, H1); 5.30-5.20 (m, $2 \mathrm{H}, \mathrm{H}^{\prime}, \mathrm{OH}$ ); 4.02-3.95 (m, 2H, H4', H2-Ala); 3.67-3.59 (m, $2 \mathrm{H}, \mathrm{H}^{\prime}$ ); 2.36-2.07 (m, 2H, H2'); 1.37 (s, 9H, H3-Boc); 1.24
(d, 3H, H3-Ala); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\delta 172.89$ (C1Ala); 161.80 (C4); 155.53 (C1-Boc); 149.46 (C2); 139.32 (C6); 129.95 (C7); 110.24 (C5); 107.00 (C8); 85.18 (C4'); 84.54 (C1'); 78.46 (C2-Boc); 75.12 (C3'); 61.38 (C5'); 49.44 (C2-Ala); 37.06 (C2'); 28.31 (C3-Boc); 16.70 (C3-Ala); $\mathrm{R}_{\mathrm{f}}$ value $0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\mathrm{MeOH}, 9: 1)$.
(E)-5-(2-Bromovinyl)-3-O-(N-Boc-D-alaninester)-2 2 -deoxyuridine 5 : yield $60 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-d ${ }^{6}$ ) $\delta 11.62$ (s, 1H , NH-BVU); 8.06 (s, 1H, H6); 7.37 (d, 1H , NH-Ala); 7.24 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{H} 8$ ); 6.83 (d, 1H, H7); 6.17 (t, 1H, H $1^{\prime}$ ); 5.26-5.21 (m, 2H, H3', OH ); 4.02-3.96 (m, 2H, H4', H2-Ala); 3.68-3.59 (m, $2 \mathrm{H}, \mathrm{H}^{\prime}$ ); 2.36-2.20 (m, 2H, H2'); 1.37 (s, 9H, H3-Boc); 1.24 (d, 3H, H3-Ala); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ ) $\delta 172.89$ (C1Ala); 161.80 (C4); 155.53 (C1-Boc); 149.46 (C2); 139.32 (C6); 129.95 (C7); 110.24 (C5); 107.00 (C8); 85.18 (C4'); 84.54 (C1'); 78.46 (C2-Boc); 75.12 (C3'); 61.38 (C5'); 49.44 (C2-Ala); 37.06 (C2'); 28.31 (C3-Boc); 16.70 (C3-Ala); $\mathrm{R}_{\mathrm{f}}$ value $0.57\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\mathrm{MeOH}, 9: 1$ ).
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-L-valinyl)-2-deoxyuridine 5k: yield 97\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\delta 9.64$ (s, 1H, NH-BVU); 7.94 (s, 1H, H6); 7.33 (d, 1H, H8); 6.66 (d, 1H, H7); 6.28 (dd, 1H, H1'); 5.43 (dt, 2H, H3'); 5.11 (d, 1H, OH); 4.19 (dd, 1H, H2-Val); 4.11 (dt, 1H, H 4'); 3.94 (ddd, H5'); 3.93 (ddd, 1H, H5"); 2.52 (ddd, 1H, H2'); 2.42 (ddd, 1H, H2"); 2.182.10 (m, 2H, H3-Val); 1.45 (s, 9H, H3-Boc); 0.99 (d, 3H, H4Val); 0.91 (d, 3H, H4'-Val); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta$ 172.21 (C1-Val); 161.62 (C4); 155.81 (C1-Boc); 149.34 (C2); 138.26 (C6); 128.25 (C7); 111.59 (C5); 109.72 (C8); 86.07 (C1'); 85.43 (C4'); 80.23 (C2-Boc); 75.29 (C3'); 62.23 (C5'); 58.39 (C2Val); 37.89 (C2'); 30.83 (C3-Val); 28.25 (C3-Boc); 19.09; 17.62 (C4-Val). R $\mathrm{R}_{\mathrm{f}}$ value $0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3-O-(N-Boc-D-valinyl)-2-deoxyuridine 51: yield 97\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO-d 6 ) $\delta 9.00$ (s, 1H, NH-BVU ); 7.92 (s, 1H, H6); 7.35 (d, 1H, H8); 6.69 (d, 1H, H7); 6.28 (dd, 1H, H 1'); 5.43-5.40 (m, 2H, H3'); 5.07-5.00 (m, 1H, OH ); 4.21-4.16 (m, 2H, H4', H2-Val); 4.01-3.93 (m, 2H, H5'); 2.48 (ddd, 1H, H2'); 2.41 (ddd, 1H, H2"); 2.18-2.10 (m, 2H, H3-Val); 1.46 (s, 9H, H3-Boc); 1.00 (d, 3H, H4-Val); 0.93 (d, 3H , H4'-Val); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 172.40$ (C1Val); 161.36 (C4); 155.79 (C1-Boc); 149.21 (C2); 138.02 (C6); 128.28 (C7); 111.63 (C5); 109.81 (C8); 85.97 (C1'); 85.29 (C4'); 80.21 (C2-Boc); 74.98 (C3'); 62.17 (C5'); 58.69 (C2-Val); 38.04 (C2'); 30.94 (C3-Val); 28.28 (C3-Boc); 19.09; 17.64 (C4-Val); $\mathrm{R}_{\mathrm{f}}$ value $0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
( E )-5-(2-Bromovinyl)-3'O-(N-Boc-L-leucinyl)-2'deoxyuridine 5m: yield 94\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }^{6}$ ) $\delta 9.38$ (s, 1H, NH-BVU); 7.94 (s, 1H, H6); 7.34 (d, 1H, H8); 6.83 (d, 1H, H7); 6.30 (dd, 1H, H1'); 5.45-5.40 (m, 2H, H3'); 4.98 (s, 1H, OH ); 4.43 (dt, 1H, H2-Leu); 4.15-4.05 (m, 1H, H 4'); 3.983.87 (m, 2H, H5'); 2.55-2.35 (m, 2H, H2'); 1.80-1.66 (m, 1H, H4-Leu); 1.65-1.49 (m, 2H, H3-Leu); 1.45 (s, 9H, H3-Boc); 0.96 (d, 6H, H5-Leu); ${ }^{13} \mathrm{C}$ NMR ( 126 MHz, DMSO-d 6 ) $\delta 173.29$ (C1Leu); 161.38 (C4); 155.57 (C1-B oc); 149.28 (C2); 138.25 (C6); 128.26 (C7); 111.65 (C5); 109.78 (C8); 86.09 (C1'); 85.42 (C4'); 80.29 (C2-Boc); 75.29 (C3'); 62.32 (C5'); 52.30 (C2-Leu); 40.98 (C3-Leu); 37.86 (C2'); 28.27 (C3-Boc); 24.84 (C4-Leu); 22.84; 21.67 (C5-Leu). R $\mathrm{R}_{\mathrm{f}}$ value $0.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-D-leucinyl)-2'deoxyuridine 5 n: yield $99 \%$; ${ }^{13}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ ) $\delta 9.22$ (s, 1H, NH-BVU); 7.94 (s, 1H, H6); 7.35 (d, 1H, H8); 6.68 (d, 1H, H7); 6.29 (dd, 1H, H 1'); 5.45-5.40 (m, 2H, H3'); 4.98 (d, 1H, OH ); 4.27 (m, 1H, H2-Leu); 4.19-4.13 (m, 1H, H4'); 4.003.92 (m, 2H, H5'); 2.49 (ddd, 1H, H2'); 2.39 (ddd, 1H, H2"); 1.76-1.68 (m, 1H, H4-Leu); 1.64-1.50 (m, 2H, H3-Leu); 1.44 (s, 9H, H3-Boc); 0.97 (d, 6H, H4-Leu); ${ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO-d 6 ) $\delta 173.50$ (C1-Leu); 161.40 (C4); 155.55 (C1-Boc); 149.22 (C2); 138.14 (C6); 128.27 (C7); 111.61 (C5); 109.81 (C8); 85.97 (C1'); 85.32 (C4'); 80.27 (C2-Boc); 74.97 (C3'); 62.20 (C5'); 52.25 (C2-Leu); 41.07 (C3-Leu); 37.99 (C2'); 28.28 (C3-Boc); 24.86 (C4-Leu); 22.83; 21.73 (C5-Leu); $\mathrm{R}_{\mathrm{f}}$ value $0.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\mathrm{MeOH}, 9: 1)$.
(E)-5-(2-Bromovinyl)-3-O-(N-Boc-L-isoleucinyl)-2 -deoxyuridine 50: yield 99\%; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.30$ ( s , 1H, NH-BVU); 7.92 (s, 1H, H6); 7.35 (d, 1H, H8); 6.67 (d, 1H,

H7); 6.28 (dd, 1H, H1 ); 5.42 (m, 2H, H3'); 5.06 (d, 1H, NHIIe); 4.23 (dd, 1H, H2-IIe); 4.12 (m, 1H, H4'); 3.95 (m, 2H, H5'); 2.45 (m, 2H, H2'); 1.88 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 3-\mathrm{lle}$ ); 1.45 (s, 9H, H3-Boc); 1.17 (m, 1H, H5-Ile); 0.95 (m, 6H, H4-IIe, H6-IIe); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.199$ (C1-I le); 161.36 (C4); 155.68 (C1Вос); 149.20 (C2); 138.19 (C6); 128.25 (C7); 111.63 (C5); 109.84 (C8); 86.15 (C1'); 85.34 (C4'); 80.24 (C2-Boc); 75.18 (C3'); 62.30 (C5'); 58.06 (C2-Ile); 37.89 (C2'); 37.53 (C3-I Ie); 28.28 (C3-Вос); 25.16 (C5-I le); 15.69 (C6-Ile); 11.57 (C4-I le). $\mathrm{R}_{\mathrm{f}}$ value 0.60 ( $\mathrm{CH}_{2-}$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ )
(E)-5-(2-Bromovinyl)-3-O-(N-Boc-D-isoleucinyl)-2 2 -deoxyuridine 5p: yield 99\%; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.30$ (s, 1H, NH-BVU); 7.94 (s, 1H, H6); 7.35 (d, 1H, H8); 6.67 (d, 1H, H7); 6.28 (dd, 1H, H1'); 5.42 (m, 2H, H3'); 5.08 (d, 1H, NHIle); 4.25 (dd, 1H, H2-Ile); 4.17 (m, 1H, H 4 ) ; 3.97 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 5^{\prime}$ ); 2.48 (m, 2H, H2'); 1.88 (m, 1H, H3-Ile); 1.45 (s, 9H, H3-Boc); 1.17 (m, 1H, H5-Ile); 0.95 (m, 6H, H4-Ile, H6-Ile); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.40$ (C1-I le); 161.44 (C4); 155.70 (C1Вос); 149.21 (C2); 138.13 (C6); 128.27 (C7); 111.57 (C5); 109.80 (C8); 85.93 (C1'); 85.26 (C4'); 80.21 (C2-Boc); 74.95 (C3'); 62.16 (C5'); 58.01 (C2-Ile); 38.03 (C2'); 37.63 (C3-I Ie); 28.28 (C3-Воc); 25.10 (C5-I le); 15.65 (C6-I le); 11.56 (C4-I le); $\mathrm{R}_{\mathrm{f}}$ value 0.60 ( $\mathrm{CH}_{2-}$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ).
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-L-phenylalaninyl)-2deoxyuridine 5q: yield 54\%; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-d ${ }^{2}$ ) $\delta 8.05$ (s, 1H, H6); 7.42 (d, 1H, NH-Phe); 7.25 (m, 6H, H8, H-aryl-Phe); 6.83 (d, 1H, H 7); 6.12 (t, 1H, H1 ${ }^{\prime}$ ); 5.35-5.10 (m, 2H, H3', OH ); 4.19-4.12 (m, 1H, H2-Phe); 3.80-3.75 (m, 1H, H4 '); 3.58 (ddd, 1H, H5'); 3.59 (ddd, 1H, H5'); 2.32-2.21 (m, 2H, H2'); 1.34 (s, 9H, H3-Boc); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\mathrm{d}_{6}$ ) $\delta 172.21$ (C1-Phe); 161.79 (C4); 155.65 (C1-Boc); 149.44 (C2); 139.31 (C6); 137.52 (C4-Phe); 129.95 (C7); 129.31 (C5Phe); 128.41 (C4-Phe); 126.70 (C6-Phe); 110.23 (C5); 106.99 (C8); 85.01 (C4'); 84.52 (C1'); 78.64 (C2-Boc); 75.23 (C3'); 61.35 (C5'); 55.68 (C2-Phe); 37.15 (C2', C3-Phe); 28.26 (C3-Boc); $\mathrm{R}_{f}$ value $0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-D-phenylalaninyl)-2deoxyuridine 5r: yield 99\%; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}) ; 7.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6) ; 7.27(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 8$, H-aryl-Phe); 6.83 (d, 1H, H7); 6.06 (t, 1H, H1'); 5.25-5.15 (m, 2H, H3'); 5.05-4.92 (m, 1H, OH ); 4.43 (dt, 1H, H2-Phe); 3.983.95 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 4^{\prime}$ ); 3.86-3.74 (m, 2H, H5 ${ }^{\prime}$ ); 2.25-2.08 (m, 2H, H2'); 1.32 (s, 9H, H3-Boc); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ${ }_{6}$ ) $\delta$ 171.92 (C1-Phe); 161.38 (C4); 155.15 (C1-Boc); 149.19 (C2); 138.21 (C6); 135.60 (C4-Phe); 129.18 (C7); 128.73 (C5ph3); 128.26 (C4-Phe); 127.30 (C6-Phe); 111.59 (C5); 109.80 (C8); 86.04 (C1'); 85.19 (C4'); 80.39 (C2-Воc); 75.22 (C3'); 62.15 (C5'); 54.63 (C2-Phe); 38.24 (C2'); 37.73 (C3-Phe); 28.23 (C3-Воc); $\mathrm{R}_{\mathrm{f}}$ value $0.76\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-L-prolinyl)-2'deoxyuridine 5s: yield 94\%; ${ }^{13} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.00$ (s, 1H, NH-BVU); 7.92 (s, 1H, H6); 7.35 (d, 1H, H8); 6.69 (d, 1H, H7); $6.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1^{\prime}\right) ; 5.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime}\right)$; 4.32 (dd, $1 \mathrm{H}, \mathrm{H} 2-$ Pro); 4.25 (m, 1H, H4'); 3.95 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{\prime}$ ); 3.50 (m, 2H, H5Pro); 2.45 (m, 2H, H2'); 1.94 (m, 4H, H3-Pro, H4-Pro); 1.46 (s, 9H, H3-Boc); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.77$ (C1-Pro); 161.36 (C4); 154.53 (C1-Boc); 149.21 (C2); 138.25 (C6); 128.26 (C7); 111.63 (C5); 109.75 (C8); 85.91 (C1'); 85.50 (C4'); 80.31 (C2-Boc); 75.27 (C3'); 62.40 (C5'); 58.93 (C2-Pro); 37.93 (C2'); 30.88 (C3-Pro); 29.89 (C5-Pro); 28.36 (C3-Boc); 24.50 (C4-Pro); $\mathrm{R}_{\mathrm{f}}$ value $0.71\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
(E)-5-(2-Bromovinyl)-3'O-(N-Boc-D-prolinyl)-2 -deoxyuridine, 5 t: yield $92 \%$; ${ }^{13} \mathrm{H}$ NR ( $400 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 9.00$ (s, 1H, NH-BVU); 7.92 (s, 1H, H6); 7.35 (d, 1H, H8); 6.69 (d, 1H, H7); 6.30 (m, 1H, H1 $)^{\prime}$ ) 5.42 (m, 1H, H3 ) ; 4.30 (dd, 1H, H2Pro); 4.25 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 4^{\prime}$ ); 3.95 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{\prime}$ ); 3.50 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 5-$ Pro); 2.45 (m, 2H, H2'); 1.91 (m, 4H, H3-Pro, H 4-Pro); 1.46 ( s , 9H, H3-Boc); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.77$ (C1-Pro); 161.36 (C4); 154.53 (C1-Boc); 149.21 (C2); 138.25 (C6); 128.21 (C7); 111.73 (C5); 109.71 (C8); 85.89 (C1'); 85.55 (C4'); 80.31 (C2-Boc); 75.27 (C3'); 62.43 (C5'); 58.93 (C2-Pro); 37.93 (C2'); 30.88 (C3-Pro); 29.89 (C5-Pro); 28.36 (C3-Boc); 24.50 (C4-Pro); $\mathrm{R}_{\mathrm{f}}$ value $0.71\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.

General Procedure for the Preparation of the cy-cloSal-(3'-O-Lev)BVDUMPs 6a-f. To a solution of $\mathbf{3}^{\prime}$-Olevulinyl BVDU $5 \mathbf{g}(0.28 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added diisopropylethylamine ( 0.56 mmol , DIPEA), and the mixture was cooled to $-20^{\circ} \mathrm{C}$. The chlorophosphanes $(0.56 \mathrm{mmol})$ were added slowly, and the solution was stirred for 20 min to complete the reaction (TLC analysis). For the oxidation, tertbutyl hydroperoxide ( 0.56 mmol ) was added to the reaction mixture at $-20^{\circ} \mathrm{C}$. After being stirred for 0.5 h , the reaction mixture was warmed to room temperature, and the solvent was removed under reduced pressure. The reaction mixtures were purified twice by chromatotron chromatography on silica gel plates using first a gradient of $\mathrm{CH}_{3} \mathrm{OH}$ in ethyl acetate followed by a gradient of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield cycloSal-3'-O-Lev-BVDUMP triesters 6.
cycl o(5-Chlorosaligenyl)-5'-O-(E)-5-(2-bromovinyl)-3'-O-levulinyl-2 -deoxyuridinyl)phosphate (5-Cl-cycloSal-3'O-Lev-BVDUMP) 6a: yield 54\%; ¹H NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.02$ (s, 2H, NH-BVU); 7.72 (s, 2H, H6); 7.45 (d, 1H, H8); 7.43 (d, 1H, H8); 7.33 (s, 1H, H4-aryl); 7.31 (s, 1H, H4aryl); 7.14 (d, 1H, H6-aryl); 7.13 (d, 1H, H6-aryl); 7.04 (d, 1H, H3-aryl); 7.03 (d, 1H, H3-aryl); 6.75 (d, 1H, H7); 6.71 (d, 1H, H7); 6.31 (dd, 1H, H1'); 6.29 (dd, 1H, H1'); 5.47-5.27 (m, 6H, H-benzyl, H3 ); 4.56-4.45 (m, 4H, H5'); 4.23 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 4^{\prime}$ ); 2.84-2.72 (m, 4H, H2-Lev); 2.63-2.51 (m, 4H, H3-Lev); 2.21 (s, 3H, H5-Lev); 2.20 (s, 3H, H5-Lev); 2.14-2.05 (m, 4H, H2'); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.47$ (C4-Lev); 172.41 (C1Lev); 172.38 (C1-Lev); 161.67 (C4); 161.63 (C4); 156.27 (C5aryl); 156.24 (C5-aryl); 149.18 (C2); 143.50 (C2-aryl); 143.42 (C2-aryl); 137.08 (C4-aryl); 128.09 (C7); 121.47 (C1-aryl); 121.32 (C1-aryl); 119.39 (C3-aryl); 119.30 (C3-aryl); 111.89 (C8); 111.82 (C8); 110.41 (C5aryl); 110.29 (C5); 110.16 (C5); 85.27 (C1'), 85.23 (C1'); 83.10 (C4'); 83.04 (C4'); 74.35 (C3'); 74.22 (C3'), 68.75 (C5'); 68.63 (C5'); 67.96 (d, C-benzyl); 67.79 (d, C-benzyl); 37.79 (C2'); 37.72 (C3-Lev); 37.70 (C2'); 29.69 (C5-Lev); 27.76 (C2-Lev); ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-7.90$; -7.97; $\mathrm{R}_{\mathrm{f}}$ value $0.53\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
cycloSaligenyl-5'-0-(E)-5-(2-bromovinyl)-3'-O-levulinyl-2-deoxyuridinyl)phosphate (cycloSal-3-O-Lev-BVDUMP) 6b: yield $39 \%$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.75$ (s, $1 \mathrm{H}, \mathrm{NH}-$ BVU); 8.74 (s, 1H, NH-BVU); 7.73 (s, 1H, H6); 7.72 (s, 1H, H6); 7.46 (d, 1H, H8); 7.43 (d, 1H, H8); 7.35 (dd, 2H, H4-aryl); 7.19-7.08 (m, 6H, H3-aryl, H5-aryl, H6-aryl); 6.76 (d, 1H, H 7); 6.69 (d, 1H, H7); 6.32 (dd, 1H, H1 1); 6.30 (dd, 1H, H1'); 5.49 (dd, 1H, $\mathrm{H}_{\mathrm{A}}$-benzyl); 5.45 (dd, 1H, $\mathrm{H}_{\mathrm{B}}$-benzyl); 5.36 (dd, 1H, $\mathrm{H}_{\mathrm{A}}$-benzyl); 5.34 (dd, 1H, H $\mathrm{H}_{\mathrm{B}}$-benzyl); 5.29 (m, 2H, H3'); 4.554.46 (m, 4H , H5'); 4.25-4.22 (m, 2H, H4'); 2.84-2.72 (m, 4H, H3-Lev); 2.63-2.49 (m, 4H, H2-Lev); 2.21 (s, 3H, H5-Lev); 2.53 (ddd, 2H, H2"); 2.20 (s, 3H, H5-Lev); 2.08 (ddd, $2 \mathrm{H}, \mathrm{H} 2^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.32$ (C4-Lev); 172.43 (C1-Lev); 172.40 (C1-Lev); 160.96 (C4); 160.94 (C4); 149.96 (d, C2-aryl); 149.93 (d, C2-aryl); 148.96 (C2); 136.84 (C6); 136.83 (C6); 130.27 (C4-aryl); 128.10 (C7); 125.55 (C5-aryl); 124.81 (C6aryl); 124.77 (C6-aryl); 118.63 (C3-aryl); 118.55 (C3-aryl); 112.02 (C8); 111.98 (C8); 110.44 (C5); 110.30 (C5); 85.26 (C1'), 85.15 (C1'); 83.11 (d, C4'); 83.04 (d, C4'); 74.34 (C3'); 74.24 (C3'), 68.71 (d, C5'); 68.62 (d, C5'); 68.04 (d, C-benzyl); 67.88 (d, C-benzyl); 37.82 (C2'); 37.75 (C3-Lev); 29.72 (C5-Lev); 27.79 (C4-Lev); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-7.90 ;-7.97 ; \mathrm{R}_{\mathrm{f}}$ value $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$.
cyclo(5-Methoxysaligenyl)-5'O-(E)-5-(2-bromovinyl)-3-O-levulinyl-2 -deoxyuridinyl)phosphate (5-OMe-cycloSal-3'-O-Lev-BVDUMP) 6c: yield 70\%; ¹H NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}) ; 7.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6) ; 7.72(\mathrm{~s}, 1 \mathrm{H}$, H6); 7.43 (d, 1H, H8); 7.39 (d, 1H, H8); 7.00 (d, 1H, H4-aryl); 6.99 (d, 1H, H4-aryl); 6.85 (d, 1H, H6-aryl); 6.83 (d, 1H, H6aryl); 6.75 (d, 1H, H7); 6.69 (d, 1H, H7); 6.62 (d, 1H, H3-aryl); 6.61 (d, 1H, H3-aryl); 6.30 (dd, 1H, H1'); 6.29 (dd, 1H, H 1'); 5.46-5.24 (m, 6H, H-benzyl, H3 ${ }^{\prime}$ ); 4.52-4.44 (m, 4H, H5'); 4.23-4.20 (m, 2H, H4'); 3.77 (s, 6H, OMe); 2.79-2.75 (m, 4H, H3-Lev); 2.59-2.48 (m, 6H, H2-Lev, H3'); 2.19 (s, 6H, H5-Lev); 2.12-2.02 (m, 4H, H2'); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.47$ (C4-Lev); 172.41 (C1-Lev); 172.38 (C1-Lev); 161.67 (C4); 161.63 (C4); 156.27 (C5-aryl); 156.24 (C5-aryl); 149.18 (C2); 143.50
(d, C2-aryl); 143.42 (d, C2-aryl); 137.08 (C4-aryl); 128.09 (C7); 121.47 (d, C1-aryl); 121.32 (d, C1-aryl); 119.39 (C3-aryl); 119.30 (C3-aryl); 111.89 (C8); 111.82 (C8); 110.41 (C5-aryl); 110.29 (C5); 110.16 (C5); 85.27 (C1'), 85.23 (C1'); 83.10 (d, C4'); 83.04 (d, C4'); 74.35 (C3'); 74.22 (C3'), 68.75 (d, C5'); 68.63 (d, C5'); 67.96 (d, C-benzyl); 67.79 (d, C-benzyl); 55.73 (OMe); 37.79 (C2'); 37.72 (C3-Lev); 37.70 (C2'); 29.69 (C5-Lev); 27.76 (C2Lev); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-7.24 ;-7.36$; $\mathrm{R}_{\mathrm{f}}$ value 0.61 ( $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ).
cyclo(3,5-Dimethylsaligenyl)-5'0-(E)-5-(2-bromovinyl)-3-O-levulinyl-2'-desoxyuridinyl)phosphate (3,5-DiMe-cycloSal-3'-O-Lev-BVDUMP) 6e: yield 49\%; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}) ; 7.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6) ; 7.74$ (s, 1H, H6); 7.45 (d, 1H, H8); $7.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 8) ; 7.00(\mathrm{~s}, 2 \mathrm{H}$, H4-aryl); 6.75 (m, 2H, H6-aryl); 6.72 (d, 1H, H7); 6.71 (d, 1H, H7); 6.32 (dd, $1 \mathrm{H}, \mathrm{H} 1^{\prime}$ ); 6.30 (dd, $1 \mathrm{H}, \mathrm{H}^{\prime}$ ); $5.46-5.19$ (m, 6H, H-benzyl, H3'); 4.53-4.38 (m, 4H, H5'); 4.23 (dt, 1H, H4 ); 4.21 (dt, 1H, H4'); 2.83-2.71 (m, 4H, H2-Lev); 2.61-2.55 (m, 4H, H3-Lev); 2.28 (s, 6H, H5-Lev); 2.23 (s, 6H, CH 3 -C5-aryl); 2.19 (s, 6H, CH ${ }_{3}$-C3-aryl); 2.22-2.00 (m, 4H, H2'); ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.37$ (C4-Lev); 175.71 (C1-aryl); 172.39 (C1Lev); 172.37 (C1-Lev); 161.41 (C4); 149.10 (C2); 136.98 (C6); 136.96 (C6); 134.03 (C5-aryl); 133.97 (C5-aryl); 132.18 (C4aryl); 132.14 (C4-aryl); 128.07 (C7); 127.42 (d, C3-aryl); 127.34 (d, C3-aryl); 123.33 (C6-aryl); 120.25 (d, C2-aryl); 120.18 (d, C2-aryl); 111.99 (C8); 111.92 (C8); 110.37 (C5); 110.28 (C5); 85.32 (C4'), 85.20 (C4'); 83.16 ( $\mathrm{C1}^{\prime}$ ); 83.10 ( $\mathrm{C1}^{\prime}$ ); 74.47 (C3'); 74.36 (C3'), 68.87 (d, C5'); 68.81 (d, C5'); 67.89 (d, C-benzyl); 67.67 (d, C-benzyl); 37.80 (C2'); 37.74 (C3-Lev); 37.70 (C2'); 29.70 (C5-Lev); 27.78 (C4-Lev); 20.61 ( $\mathrm{CH}_{3}-\mathrm{C} 5-\mathrm{aryl}$ ); 20.57 ( $\mathrm{CH}_{3}$-C5-aryl); $15.31\left(\mathrm{CH}_{3}\right.$-C3-aryl); $15.26\left(\mathrm{CH}_{3}\right.$-C3-aryl); ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.61 ;-5.91 ; \mathrm{R}_{\mathrm{f}}$ value $0.49\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ).
cyclo(3-tButylsaligenyl)-5'0-(E)-5-(2-bromovinyl)-3'0-levulinyl-2 -deoxyuridinyl) phosphate (3-tBu-cycloSal-3'-O-Lev-BVDUMP) 6f: yield 50\%; 1H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.98$ (s, 2H, NH-BVU); 7.78 (s, 2H, H6); 7.43 (d, 1H, H8); 7.42 (d, 1H, H8); 7.35 (d, 2H, H4-aryl); 7.10 (dd, 1H, H5-aryl); 7.00 (d, 2H, H6-aryl); 6.72 (d, 1H, H7); 6.72 (d, 1H, H7); 6.31 (dd, 1H, H 1'); 6.30 (dd, 1H, H1'); 5.46-5.23 (m, 6H, H-benzyl, H3 ); 4.59-4.39 (m, 4H, H5'); 4.22 (m, 2H, H4'); 2.84-2.70 (m, 4H, H2-Lev); 2.61-2.55 (m, 4H, H3-Lev); 2.18 (s, 6H, H5-Lev); 2.22-2.00 (m, 4H, H2'); 1.39 (s, 9H, CH $\mathrm{CH}_{3}$-tBu); 1.38 (s, 9H, CH ${ }_{3}$ tBu); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.49$ (C4-Lev); 206.46 (C4-Lev); 176.36 (C1-aryl); 172.36 (C1-Lev); 161.88 (C4); 161.85 (C4); 149.24 (C2); 139.49 (C); 139.42 (C); 137.17 (C6); 137.11 (C6); 128.02 (C7); 127.89 (C7); 124.46 (C); 124.38 (C); 123.81 (C6-aryl); 123.79 (C6-aryl); 122.10 (d, C2-aryl); 122.01 (d, C2aryl); 111.93 (C8); 111.89 (C8); 110.35 (C5); 110.24 (C5); 85.34 (C4'), 85.04 (C4'); 83.11 (C1'); 83.01 (C1'); 74.29 (C3'); 74.23 (C3'), 68.80 (d, C5'); 68.73 (d, C5'); 68.19 (d, C-benzyl); 67.88 (d, C-benzyl); 53.39 (C7-aryl); 37.71 (C2'); 37.70 (C3-Lev); 37.63 (C2'); 29.75 (C8-aryl); 27.74 (C2-Lev); 20.69 (C5-Lev); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-6.67 ;-7.21 ; \mathrm{R}_{\mathrm{f}}$ value $0.67\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\mathrm{MeOH}, 9: 1)$.

General Procedure for the Preparation of the cycloSal-BVDUMPs 2a-f. To a solution of the cycloSal-3'-O-Lev-BVDUMPs $6(0.28 \mathrm{mmol})$ in 10 mL of pyridine was added a solution of hydrazine hydrate ( $13.3 \mathrm{~mL}, \mathrm{H}_{2} \mathrm{NNH}_{2} * \mathrm{H}_{2} \mathrm{O}$ (24\%)/pyridine/ $\mathrm{CH}_{3} \mathrm{COOH}$ 2:4:3), and the reaction mixture was stirred for 5 min at room temperature. Then the solution was cooled to $0^{\circ} \mathrm{C}$, and 50 mL of ethyl acetate and 50 mL of water were added and mixed well. After separation, the organic phase was washed with $5 \%$ sodium hydrogencarbonate solution and dried with magnesium sulfate, and the solvent was removed under reduced pressure. The residues were purified by chromatography on silica gel plates on a chromatotron, using a gradient of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the title compounds $\mathbf{2 a - f}$.
cyclo(5-Chlorsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2'deoxyuridinyl)phosphate (5-Cl-cycloSal-BVDUMP) 2a: yield $91 \%$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 11.57$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-$ BVU); 7.77 (s, 1H, H6); 7.74 (s, 1H, H6); 7.40-7.37 (m, 4H, H3-aryl, H6-aryl); 7.28 (d, 1H, H8); 7.27 (d, 1H, H8); 7.14 (dd,

2H, H4-aryl); 6.86 (d, 1H, H7); 6.82 (d, 1H, H 7); 6.15 (dd, 1H, H1'); 6.13 (dd, 1H, H 1'); 5.52-5-38 (m, 4H, H-benzyl); 4.404.25 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\prime}$ ); 4.23-4.20 (m, 2H, H4'); 3.93-3.91 (m, 2H, H3'); 2.20-2.11 (m, 4H, H2'); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 156.21 (C4); 156.19 (C5-aryl); 149.21 (C2); 143.20 (d, C2-aryl); 143.19 (d, C2-aryl); 137.29 (C4-aryl); 137.18 (C4-aryl); 128.31 (C7); 128.24 (C7); 121.20 (d, C1-aryl); 121.19 (d, C1-aryl); 119.20 (d, C3-aryl); 119.10 (d, C3-aryl); 111.31 (C8); 111.26 (C8); 110.33 (C5-aryl); 110.31 (C5-aryl); 109.40 (C5); 109.33 (C5); 85.30 (C1'), 85.20 (C1'); 84.75 (d, C4'); 84.52 (d, C4'); 69.72 (C3'); 69.35 (C3'), 68.74 (d, C5'); 68.64 (d, C5'); 67.37 (d C-benzyl); 67.03 (d, C-benzyl); 40.31 (C2'); 40.19 (C2'); ${ }^{31}$ P NMR (202 MHz, CDCl 3 ) $\delta-8.79 ;-8.89 ;$ MS (FAB) m/z 535.0; 537.0 $\left(\mathrm{M}+\mathrm{H}^{+}\right) ; \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }}$ $268.8 \mathrm{~nm}, 224.7 \mathrm{~nm} ; \mathrm{R}_{\mathrm{f}}$ value $0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 13.36 \mathrm{~min}(98 \%$, gradient II).
cycloSaligenyl-5'-0-(E )-5-(2-bromovinyl)-2 -deoxyuridinyl)phosphate (cycloSal-BVDUMP) 2b: yield 88\%; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}$ ) $\delta 7.55$ (s, 1H, H6); 7.52 (s, 1H, H6); 7.39 (d, 1H, H8); 7.34 (d, 1H, H8); 7.37-7.33 (m, 2H, H4aryl); 7.21-7.14 (m, 4H, H3-aryl, H6-aryl); 7.10 (t, 2H, H5aryl); 6.66 (d, 1H, H7); 6.56 (d, 1H, H7); 6.23 (dd, 4H, H 1') 5.47 (dd, 1H, $\mathrm{H}_{\mathrm{A}}$-benzyl); 5.46 (dd, 1H, $\mathrm{H}_{\mathrm{A}}$-benzyl); 5.39 (dd 2H, H ${ }^{\text {B }}$-benzyl); 4.49-4.40 (m, 6H, H5', H4'); 4.09-4.06 (m 2H, H3'); 2.43 (ddd, 1H, H2'); 2.40 (ddd, 1H, H2'); 2.14 (ddd 1H, H2"); 2.09 (ddd, 1H, H2"); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 161.42 (C4); 149.11 (C2); 149.07 (C2); 146.24 (C2-aryl); 146.18 (C2-aryl); 137.42 (C6); 137.27 (C6); 134.19 (C5-aryl); 134.12 (C5-aryl); 132.27 (C4-aryl); 132.22 (C4-aryl); 128.26 (C7); 128.09 (C7); 127.42 (d, C3-aryl); 127.34 (d, C3-aryl); 123.52 (C6-aryl); 123.39 (C6-aryl); 120.35 (d, C2-aryl); 120.07 (d, C2aryl); 111.45 (C8); 111.43 (C8); 110.09 (C5); 110.05 (C5); 85.55 (C1'), 85.28 (C1'); 84.98 (d, C4'); 84.65 (d, C4'); 70.54 (C3'); 69.59 (C3'), 69.17 (d, C5'); 68.88 (d, C5'); 66.64 (d, C-benzyl); 66.65 (d, C-benzyl); 40.62 (C2'); 40.34 (C2'); ${ }^{31}$ P NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-2.95$; MS (FAB) m/z 501.0; $502.9\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}$, $224.7 \mathrm{~nm} ; \mathrm{IR}(\mathrm{KBr}) v$ 3471, 3453, 3424, 3311, 3195, 3104, 3070, 2958, 2923, 1714, 1594, 1488, 1459, 1411, 1365, 1292, 1247, 1224, 1191, 1157, 1106, 1058, 1020, 946, 844, 759, 435; $\mathrm{R}_{\mathrm{f}}$ value $0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.19$ min (98\%, gradient II)
cyclo(5-Methoxysaligenyl)-5'0-(E)-5-(2-bromovinyl)-2' deoxyuridinyl)phosphate (5-OMe-cycloSal-BVDUMP) 2c: yield 71\%; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.11(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}-$ BVU); 7.58 (s, 1H, H6); 7.56 (s, 1H, H6); 7.40 (d, 1H, H8); 7.36 (d, 1H, H8); 7.02 (d, 1H, H4-aryl); 7.00 (d, 1H, H4-aryl); 6.85 (m, 2H, H3-aryl); 6.65 (d, 1H, H 7); 6.64 (d, 1H, H 6-aryl); 6.63 (d, 1H, H6-aryl); 6.54 (d, 1H, H7); 6.25 (m, 2H, H1'); 5.465.24 (m, 4H, H-benzyl); 4.57-4.39 (m, 6H, H3', H5'); 4.134.09 (m, 2H, H4'); 3.79 (s, 3H, OM e); 3.78 (s, 3H, OM e); 2.532.45 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 2^{\prime}$ ); 2.23-2.12 (m, 2H, H2'); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 156.21$ (C4); 156.19 (C5-aryl); 149.21 (C2); 143.20 (d C2-aryl); 143.19 (d, C2-aryl); 137.29 (C4-aryl); 137.18 (C4-aryl); 128.31 (C7); 128.24 (C7); 121.20 (d, C1-aryl); 121.19 (d, C1 aryl); 119.20 (d, C3-aryl); 119.10 (d, C3-aryl); 111.31 (C8) 111.26 (C8); 110.33 (C5-aryl); 110.31 (C5-aryl); 109.40 (C5); 109.33 (C5); 85.30 (C1'), 85.20 (C1'); 84.75 (d, C4'); 84.52 (d C4'); 69.72 (C3'); 69.35 (C3'), 68.74 (d, C5'); 68.64 (d, C5'); 67.37 (d, C-benzyl); 67.03 (d, C-benzyl); 55.56 (OMe); 55.53 (OMe); 40.31 (C2'); 40.19 (C2'); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-6.40$; -6.54; MS (FAB) m/z 531.4; 533.4 (M + H+ ); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3}-$ CN ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR $(\mathrm{KBr}) ~ v 3423,3193,3102,3068,2948,2836,1708,1594,1496$, $1465,1432,1363,1284,1197,1159,1085,1024,950,914,865$ 848, 804, 665, 530, 431; $\mathrm{R}_{\mathrm{f}}$ value $0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $t_{R} 12.32 \mathrm{~min}(98 \%$, gradient II)
cyclo(3-Methylsaligenyl)-5'-O-(E )-5-(2-bromovinyl)-2'deoxyuridinyl)phosphate (3-Me-cycloSal-BVDUMP) 2d: yield 99\%; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 11.56$ (s, 2 H , NHBVU ); 7.76 (s, 1H, H6); 7.75 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.23 (dd, 1H, H5-aryl); 7.22 (dd, 1H, H5-aryl); 7.07-7.05 (m, 4H, H4-aryl, H6-aryl); 6.86 (d, 1H, H7); 6.84 (d, 1H, H7); $6.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\prime}\right) ; 6.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 1^{\prime}\right) ; 5.48-5.36(\mathrm{~m}$,

6H, H-benzyl, OH ); 4.38-4.22 (m, 6H, H5', H3'); 3.94-3.90 (m, 2H, H4'); 2.20-2.13 (m, 2H, H2'); 2.20 (s, 3H, CH 3 -C3aryl); 2.18 (s, 3H, CH3-C3-aryl); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\mathrm{d}_{6}$ ) $\delta 161.81$ (C4); 161.79 (C4); 149.39 (C2); 148.12 (d, C2-aryl); 148.07 (d, C2-aryl); 139.48 (C6); 139.41 (C6); 131.10 (C4-aryl); 131.08 (C4-aryl); 129.94 (C7); 127.07 (C3-aryl); 126.99 (C3aryl); 124.15 (C5-aryl); 123.74 (C6-aryl); 123.71 (C6-aryl); 121.14 (d, C1-aryl); 121.09 (d, C1-aryl); 110.37 (C5); 110.34 (C5); 107.19 (C8); 84.87 (C1'); 84.80 (C1'); 84.67; (d, C4'); 84.63 (d, C4'); 69.89 (C3'); 69.83 (C3'); 68.66 (d, C5'); 68.59 (d, C5'); 67.97 (d, C-benzyl); 67.91 (d, C-benzyl); 15.07 ( $\left.\mathrm{CH}_{3}-\mathrm{C} 3-\mathrm{aryl}\right)$; $15.04\left(\mathrm{CH}_{3}-\mathrm{C} 3-\mathrm{aryl}\right)$; ${ }^{31} \mathrm{P}$ NMR ( 162 MHz , DMSO-d ${ }_{6}$ ) $\delta-8.82$; -8.90; MS (FAB) m/z 515.3 (M); UV (CH ${ }_{3} C N$ ) $\lambda_{\text {max }} 293.39 \mathrm{~nm}$, $250.10 \mathrm{~nm}, 196.82 \mathrm{~nm} ; \lambda_{\text {min }} 270.08 \mathrm{~nm}, 226.79 \mathrm{~nm} ;$ IR (KBr) $v$ 3423, 2346, 1701, 1560, 1466, 1364, 1286, 1187, 1086, 1023, $955,869,526,478 ; \mathrm{R}_{\mathrm{f}}$ value $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.69 \mathrm{~min}$ (>97\%, gradient II).
cyclo(3,5-Dimethylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2-deoxyuridinyl)phosphate (3,5-DiMe-cycloSal-BVDUMP) 2e: yield 77\%; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.34$ (s, 2H, NHBVU); 7.59 (s, 1H, H6); 7.57 (s, 1H, H6); 7.38 (d, 1H, H8); 7.36 (d, 1H, H8); 7.00 (d, 2H, H4-aryl); 6.77 (d, 2H, H6-aryl); 6.61 (d, 1H, H7); 6.55 (d, 1H, H7); 6.26 (dd, 1H, H 1'); 6.24 (dd, 1H, H1 ${ }^{\prime}$ ); 5.45-5.26 (m, 6H , H-benzyl, H3'); 4.58-4.36 (m, 4H, H5'); 4.14 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 4^{\prime}$ ); 4.09 (m, 1H, H4'); 2.28 ( $\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C} 5-\mathrm{aryl}$ ); 2.27 (s, 6H, CH3-C3-aryl); 2.22-2.00 (m, 4H, H2'); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.42$ (C4); 149.11 (C2); 149.07 (C2); 146.24 (C2-aryl); 146.18 (C2-aryl); 137.42 (C6); 137.27 (C6); 134.19 (C5-aryl); 134.12 (C5-aryl); 132.27 (C4-aryl); 132.22 (C4aryl); 128.26 (C7); 128.09 (C7); 127.42 (d, C3-aryl); 127.34 (d, C3-aryl); 123.52 (C6-aryl); 123.39 (C6-aryl); 120.35 (d, C2-aryl); 120.07 (d, C2-aryl); 111.45 (C8); 111.43 (C8); 110.09 (C5); 110.05 (C5); 85.55 (C1'), 85.28 (C1'); 84.98 (d, C4'); 84.65 (d, C4'); 70.54 (C3'); 69.59 (C3'), 69.17 (d, C5'); 68.88 (d, C5'); 66.64 (d, C-benzyl); 66.65 (d, C-benzyl); 40.62 (C2'); 40.34 (C2'); 20.61 ( $\mathrm{CH}_{3}$-C5-aryl); $15.19\left(\mathrm{CH}_{3}\right.$-C3-aryl); ${ }^{31 \mathrm{P}} \mathrm{NMR}(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-5.55 ;-5.98 ; \mathrm{MS}$ (FAB) m/z 529.1; $531.5\left(\mathrm{M}+\mathrm{H}^{+}\right.$); UV $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}$, 224.7 nm ; IR (K Br) $v 3424,3195,3102,3066,2950,2923,2832$, 1704, 1594, 1481, 1463, 1363, 1284, 1199, 1149, 1108, 1085, 1025, 995, 950, 856, 802, 665, 532, 430; $\mathrm{R}_{\mathrm{f}}$ value $0.49\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ); analytical $\mathrm{HPLC}_{\mathrm{R}} 13.65 \mathrm{~min}$ ( $98 \%$, gradient II)
cyclo(3-tB utylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2'deoxyuridinyl) phosphate (3-tBu-cycloSal-BVDUMP) 2f: yield 62\%; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.63$ (s, 1H, NH-BVU); 9.59 (s, 1H, NH-BVU); 7.63 (s, 1H, H6); 7.59 (s, 1H, H6); 7.41 (d, 1H, H8); 7.36 (d, 1H, H8); 7.36 (d, 2H, H4-aryl); 7.12 (dd, 1H, H5-aryl); 7.11 (dd, 1H, H5-aryl); 7.06 (d, 1H, H6-aryl); 7.01 (d, 1H, H6-aryl); 6.60 (d, 2H, H7); 6.28 (dd, 1H, H1'); 6.25 (dd, 1H, H1 $)^{\prime}$; 5.47-5.28 (m, 4H, H-benzyl); 4.59-4.52 (m, 4H, H5'); 4.48-4.38 (m, 2H, H4'); 2.54-2.45 (m, 2H, H3'); 2.24-2.09 (m, $4 \mathrm{H}, \mathrm{H}^{\prime}$ ); 1.43 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$-tBu); 1.40 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$-tBu); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.61$ (C4); 149.25 (C2); 149.16 (C2); 149.10 (C3-aryl); 149.01 (C3-aryl); 139.54 (d, C2-aryl); 139.44 (d, C2-aryl); 137.48 (C6); 137.38 (C6); 128.24 (C7); 128.13 (C7); 128.04 (C4-aryl); 127.99 (C4-aryl); 124.65 (C5-aryl); 124.51 (C5aryl); 124.05 (C6-aryl); 123.92 (C6-aryl); 122.24 (d, C1-aryl); 122.16 (d, C1-aryl); 111.58 (C8); 111.43 (C8); 110.14 (C5); 85.42 (C1'), 85.27 (C1'); 84.89 (d, C4'); 84.70 ( $d, C 4^{\prime}$ ); 70.63 (C3'); 69.52 (C3'), 69.10 (d, C5'); 68.77 (d, C5'); 67.84 (d, C-benzyl); 67.05 (d, C-benzyl); 40.65 (C2'); 40.28 (C2'); 34.80 (C7-aryl); 34.78 (C7-aryl); 29.85 (C8-aryl); 29.80 (C8-aryl); 31P NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.68 ;-6.08$; MS (FAB) m/z $557.4\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}$, 224.7 nm ; IR (KBr) $v 3424,3262,3249,3232,3216,3205,3068$, 2996, 2960, 2884, 1708, 1693, 1594, 1463, 1440, 1365, 1284, 1214, 1199, 1180, 1145, 1087, 1018, 997, 944, 802, 784, 742, 665, 530, 428; R falue $0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $t_{R}$ 14.77; 14.96 min ( $98 \%$, gradient II).
General Procedure for the Preparation of the cy-cloSal-BVDUMPs $\mathbf{3 a - g}$ and $\mathbf{7 a}-\mathbf{m}$. To a solution of $3^{\prime}-$ esterified BVDU 5 ( 0.28 mmol ) in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added diisopropylethylamine ( 0.56 mmol , DIPEA), and the mixture
was cooled to $-20^{\circ} \mathrm{C}$. Then, chlorophosphanes ( 0.56 mmol ) were added slowly, and the solution was stirred for 20 min . For the oxidation of the intermediate cyclic phosphites, tertbutyl hydroperoxide ( 0.56 mmol ) was added to the reaction mixture at $-20^{\circ} \mathrm{C}$. After being stirred for 0.5 h , the reaction mixture was warmed to room temperature, and the solvent was removed under reduced pressure. The residues were purified twice by chromatography on silica gel plates on a chromatotron, first using a gradient of $\mathrm{CH}_{3} \mathrm{OH}$ in ethyl acetate followed by a gradient of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the title compounds $\mathbf{3 a}-\mathbf{g}$ and $\mathbf{7 a}-\mathbf{m}$ in 49-73\% yield. Triesters $\mathbf{7 a}-\mathbf{m}$ were isolated, and the N -Boc group was immediately cleaved by TFA to give 4a-m
cycl o(3-Methylsaligenyl)-5'-O-(E )-5-(2-bromovinyl)-3'-O-acetyl-2'deoxyuridinyl)phosphate (3-Me-cycloSal-3'-O-Ac-BVDUMP) 3a: yield 73\%; 1H NMR ( 400 MHz , DMSO$\mathrm{d}_{6}$ ) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6) ; 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6) ; 7.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 8) ; 7.28$ (d, 1H, H8); 7.24 (dd, 1H, H5-aryl); 7.23 (dd, 1H, H5-aryl); 7.08-7.05 (m, 4H, H4-aryl, H6-aryl); 6.83 (d, 1H, H7); 6.82 (d, 1H, H7); 6.14 (dd, 1H, H1'); 6.13 (dd, 1H, H 1'); 5.20-5.15 (m, 2H, H3'); 5.49-5.38 (m, 4H, H-benzyl); 4.43-4.31 (m, 4H, H5'); 4.20-4.15 (m, 2H, H4'); 2.43-2.30 (m, 4H, H2'); 2.19 (s, 3H, CH 3 -C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ Ac); 2.03 (s, 3H, CH 3 -Ac); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta$ 170.13 (C1-Ac); 161.74 (C4); 161.72 (C4); 149.34 (C2); 148.01 (C2); 148.05 (d, C2-aryl); 139.29 (C6); 139.24 (C6); 131.09 (C4aryl); 131.04 (C4-aryl); 129.73 (C7); 127.04 (C3-aryl); 126.96 (C3-aryl); 124.15 (C5-aryl); 123.70 (C6-aryl); 121.12 (d, C1aryl); 121.03 (d, C1-aryl); 110.47 (C5); 110.43 (C5); 107.30 (C8); 85.05 (C1'); 84.98 (C1'); 82.08 (d, C4'); 82.02 (d, C4'); 73.36 (C3'); 73.31 (C3'); 68.65 (d, C5'); 68.60 (d, C5'); 67.67 (d, C-benzyl); 67.62 (d, C-benzyl); 36.18 (C2'); 36.05 (C2'); 20.88 (C2-Ac); 15.02 ( $\mathrm{CH}_{3}$-C3-aryl); $14.97\left(\mathrm{CH}_{3} \mathrm{C} 3\right.$-aryl); ${ }^{31 \mathrm{P}}$ NMR ( $162 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta-8.95 ;-9.06 ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} 558.9$ $(\mathrm{M}+\mathrm{H})$; UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }} 293.39 \mathrm{~nm}, 250.10 \mathrm{~nm}, 196.82 \mathrm{~nm}$; $\lambda_{\text {min }} 268.42 \mathrm{~nm}, 226.79 \mathrm{~nm}$; IR (K Br) $v 3430,2346,1718,1708$, 1654, 1637, 1560, 1474, 1291, 1023, 574, 484, 455; R $\mathrm{R}_{\mathrm{f}}$ value $0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 17.85 \mathrm{~min}$ ( $98.63 \%$, gradient I).
cyclo(3-Methylsaligenyl)-5'-O-(E )-5-(2-bromovinyl)-3'-O-propionyl-2'deoxyuridinyl)phosphate (3-Me-cycloSal-3'-O-Prop-BVDUMP) 3b: yield $30 \%$; ${ }^{17} \mathrm{H}$ NMR ( 500 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 8.85$ (s, 2H, NH-BVU); 7.75 (s, 1H, H6), 7.74 (s, 1H, H6); 7.47 (d, $1 \mathrm{H}, \mathrm{H} 8$ ); 7.45 (d, $1 \mathrm{H}, \mathrm{H} 8$ ); 7.22 (d, 2H, H4-aryl); 7.08 (dd, 2H, H5-aryl); 6.98 (d, 2H, H3-aryl); 6.75 (d, 1H, H7); 6.73 (d, 1H, H7); 6.34 (dd, 1H, H1'); 6.32 (dd, 1H, H1'); 5.46 (dt, 2H, H3'); 5.35-5.24 (m, 4H , H-benzyl); 4.57-4.41 (m, 4H, H5'); 4.21 (m, 1H, H4'); 2.52 (dd, 2H, H2'); 2.37 (q, 2H, H2Prop); 2.36 (q, 2H, H2-Prop); 2.30 (s, 6H, CH 3 -C3-aryl); 2.08 (ddd, 2H, H2"); 1.17 (t, 3H, H3-Prop); 1.16 (t, 3H, H3-Prop); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.00$ (C1-Prop); 160.62 (C4); 148.78 (C2); 136.72 (C6); 131.65 (C4-aryl); 128.02 (C7, C3-aryl); 124.39 (C5-aryl); 123.08 (C6-aryl); 112.11 (C8); 110.54 (C5); 85.25 (C4'), 83.33 (C1'); 83.27 (C1'); 74.09 (C3'); 74.03 (C3'), 68.72 (C5'); 37.92 (C2'); 27.36 (C2-Prop); 15.33 ( $\mathrm{CH}_{3}-\mathrm{C} 3$-aryl); 8.84 (C3-Prop); ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-6.78 ;-6.92$; MS (FAB) m/z 571.4 (M); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}$, 248.0 nm ; $\lambda_{\text {min }} 266.6 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) $v 3417,3407$, 3386, 3361, 3193, 3106, 3070, 2952, 2925, 2854, 1714, 1594, 1465, 1417, 1365, 1294, 1191, 1164, 1110, 1062, 1020, 941, 869, 852, 819, 769, 651, 530, 430; R R value $0.79\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 13.60 \mathrm{~min}$ ( $>97 \%$, gradient II).
cyclo(3-Methylsaligenyl)-5'-0-(E)-5-(2-bromovinyl)-3'-O-i butyryl-2'deoxyuridinyl)phosphate (3-Me-cycloSal-3'-O-iBu-BVDUMP) 3c: yield 70\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.72$ (s, 2H, NH-BVU); 7.76 (s, 1H, H6), $7.75(\mathrm{~s}, 1 \mathrm{H}$, H6); 7.47 (d, 1H, H8); 7.45 (d, 1H, H8); 7.21 (d, 2H, H4-aryl); 7.07 (dd, 2H, H5-aryl); 6.97 (d, 2H, H3-aryl); 6.73 (d, 1H, H7); 6.72 (d, 1H, H7); 6.33 (dd, 1H, H1'); 6.32 (dd, 1H, H1'); 5.45 (dt, 2H, H3 ${ }^{\prime}$ ); 5.35-5.23 (m, 4H, H-benzyl); 4.55-4.42 (m, 4H, H5'); 4.20-4.16 (m, 2H, H4'); 2.64 (m, 3H, H2', H2-iBu); 2.29 (s, 6H, CH $3_{3}-\mathrm{C} 3$-aryl); 2.08 (ddd, $2 \mathrm{H}, \mathrm{H}_{2}^{\prime \prime}$ ); 1.19 (d, 3H, H3iBu); 1.18 (t, 3H, H3-iBu); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 176.74$ (C1-iBu); 160.95 (C4); 148.99 (C2); 148.47 (C2-aryl); 148.40
(C2-aryl); 136.80 (C6); 136.76 (C6); 131.63 (C4-aryl); 131.60 (C4-aryl); 128.04 (C7); 127.89 (C3-aryl); 127.80 (C3-aryl); 124.37 (C5-aryl); 124.33 (C5-aryl); 123.07 (C6-aryl); 120.65 (C1aryl); 120.57 (C1-aryl); 112.11 (C8); 112.06 (C8); 110.50 (C5); 110.42 (C5); 85.33 (C4'), 85.15 (C4'); 83.40 (C1'); 83.33 (C1'); 74.04 (C3'); 73.99 (C3'), 68.81 (C5'); 68.75 (C5'); 67.95 (Cbenzyl); 67.76 (C-benzyl); 37.89 (C2'); 37.81 (C2'); 33.68 (C2iBu); 18.75 (C3-i Bu); $15.32\left(\mathrm{CH}_{3}\right.$-C3-aryl); $15.28\left(\mathrm{CH}_{3}\right.$-C3-aryl); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-6.79 ;-6.94 ;$ MS (FAB) m/z 585.0; $587.0\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0$ $\mathrm{nm} ; \lambda_{\text {min }} 266.6 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) $v 3440,3424,3197$, 3104, 3070, 2975, 2933, 2881, 1714, 1631, 1594, 1467, 1367, 1294, 1189, 1155, 1116, 1062, 1018, 943, 819, 771, 659, 532, 431; $\mathrm{R}_{\mathrm{f}}$ value $0.86\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}$ 13.99 min (>97\%, gradient II)
cyclo(3-Methylsaligenyl)-5'-0-(E)-5-(2-bromovinyl)-3'-O-pivaloyl-2-deoxyuridinyl)phosphate (3-Me-cycloSal-3'-O-Piv-BVDUMP) 3d: yield 61\%; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-d ${ }_{6}$ ) $\delta 11.62$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}$ ); 7.84 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 6$ ); 7.83 ( s , 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.23 (dd, 1H, H5aryl); 7.22 (dd, 1H, H5-aryl); 7.07-7.05 (m, 4H, H4-aryl, H6aryl); 6.83 (d, 1H, H7); 6.82 (d, 1H, H7); 6.16-6.11 (m, 2H, H1'); 5.49-5.38 (m, 4H, H-benzyl); 5.19-5.14 (m, 2H, H3'); 4.43-4.31 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\prime}$ ); 4.15-4.11 (m, 2H, H4'); 2.44-2.27 (m, 4H, H2'); 2.19 (s, 3H, CH 3 -C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); 1.14 (s, 9H, CH ${ }_{3}$-Piv); 1.13 (s, 9H, CH $3_{3}$-Piv); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{\text {) }} \delta 177.13$ (C1-Piv); 161.72 (C4); 149.34 (C2); 148.06 (d, C2-aryl); 147.99 (d, C2-aryl); 139.37 (C6); 139.26 (C6); 131.08 (C4-aryl); 131.04 (C4-aryl); 129.72 (C7); 127.02 (C3-aryl); 126.95 (C3-aryl); 124.16 (C5-aryl); 123.70 (C6-aryl); 121.08 (d, C1-aryl); 120.52 (d, C1-aryl); 110.49 (C5); 110.45 (C5); 107.33 (C8); 85.13 (C1'); 85.06 (C1'); 82.19 (d, C4'); 82.12 (d, C4'); 73.50 (C3'); 73.45 (C3'); 68.71 (d, C5'); 68.64 (d, C5 ${ }^{\prime}$ ); 67.70 (d, C-benzyl); 67.64 (d, C-benzyl); 38.25 (C2-Piv); 36.29 (C2'); 36.15 (C2'); 26.78 (C3-Piv); 15.03 ( $\mathrm{CH}_{3}-\mathrm{C} 3-$ aryl ); 14.97 $\left(\mathrm{CH}_{3}-\mathrm{C} 3-\mathrm{aryl}\right)$; ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta-8.99 ;-9.04$; MS (FAB) m/z $598.0\left(\mathrm{M}-\mathrm{H}^{+}\right) ; 621.0\left(\mathrm{M}-\mathrm{H}^{+}+\mathrm{Na}^{+}\right)$; UV $\left(\mathrm{CH}_{3^{-}}\right.$ CN ) $\lambda_{\text {max }} 291.73 \mathrm{~nm}, 250.10 \mathrm{~nm}, 195.15 \mathrm{~nm} ; \lambda_{\text {min }} 268.42 \mathrm{~nm}$, 226.79 nm ; IR (KBr) v 3447, 2346, 1718, 1654, 1560, 1458, 1364, 1281, 1191, 1157, 1017, 940, 776; $\mathrm{R}_{\mathrm{f}}$ value $0.86\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ); analytical HPLC $\mathrm{t}_{\mathrm{R}} 20.77$ min (>99\%, gradient I).
cyclo(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-3'-O-hexanoyl-2'-deoxyuridinyl) phosphate (3-Me-cycloSal-3'-O-Hex-BVDUMP) 3e: yield 50\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.28$ (s, 2H, NH-BVU); 7.76 (s, 1H, H6); 7.75 (s, 1H, H6); 7.47 (d, 1H, H8); 7.45 (d, 1H, H8); 7.22 (d, 2H, H4-aryl); 7.08 (dd, 2H, H5-aryl); 6.98 (d, 2H, H3-aryl); 6.75 (d, 1H, H 7); 6.73 (d, 1H, H7); 6.33 (dd, 1H, H1'); 6.32 (dd, 1H, H1); 5.46 (dt, 2H, H3'); 5.35-5.22 (m, 4H, H-benzyl); 4.55-4.42 (m, 4H, H5'); 4.23-4.17 (m, 2H, H4'); 2.53 (dd, 1H, H2'); 2.49 (dd, 1H, H2'); 2.35 ( $\mathrm{q}, 2 \mathrm{H}, \mathrm{H} 2-\mathrm{Hex}$ ); 2.34 ( $\mathrm{q}, 2 \mathrm{H}, \mathrm{H} 2-\mathrm{Hex}$ ); 2.28 (s, 6H, $\mathrm{CH}_{3}$-C3-aryl); 2.13 (ddd, 1H, H2"); 2.04 (ddd, 1H, H2"); 1.681.60 (m, 4H, H3-Hex); 1.38-1.25 (m, 8H, H4-Hex, H5-Hex); 0.97 (t, 6H, H6-Hex); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.43$ (C1-Hex); 173.41 (C1-Hex); 160.69 (C4); 148.83 (C2); 136.77 (C6); 136.73 (C6); 131.65 (C4-aryl); 131.63 (C4-aryl); 128.03 (C7, C3-aryl); 124.38 (C5-aryl); 124.34 (C5-aryl); 123.09 (C6aryl); 112.11 (C8); 112.06 (C8); 110.54 (C5); 110.45 (C5); 85.34 (C4'), 85.17 (C4'); 83.35 (C1'); $83.30\left(\right.$ C1') $^{\prime} 74.03$ (C3'); 73.98 (C3'), 68.82 (d, C5'); 68.82 (d, C5'); 67.95 (d, C-benzyl); 67.76 (d, C-benzyl); 37.92 (C2'); 37.84 (C2'); 33.97 (C2-Hex); 31.20 (C4-Hex); 24.41 (C3-Hex); 22.25 (C5-Hex); 15.33 ( $\mathrm{CH}_{3}-\mathrm{C} 3-\mathrm{aryl}$ ); 15.28 ( $\mathrm{CH}_{3}$-C3-aryl); 13.86 (C6-Hex); ${ }^{31 \mathrm{P}}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-6.80$; -6.93; MS (FAB) m/z 613.5 (M); UV ( $\mathrm{H}_{2} \mathrm{O} /$ $\mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 288.1 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 266.6 \mathrm{~nm}, 224.7 \mathrm{~nm} ;$ IR (KBr) v 3447, 2346, 1718, 1654, 1560, 1458, 1364, 1281, 1191, 1157, 1017, 940, 776; $\mathrm{R}_{\mathrm{f}}$ value $0.80\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $t_{R} 16.61$ min (>97\%, gradient II).
cyclo(3-Methylsaligenyl)-5'-0-(E )-5-(2-bromovinyl)-3'-O-decanoyl-2 -deoxyuridinyl)phosphate (3-Me-cycloSal-3'-O-Dec-BVDUMP) 3f: yield 56\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.96$ (s, 2H, NH-BVU); 7.75 (s, 1H, H6); 7.74 (s, 1H, H6); 7.47(d, 1H, H8); 7.45 (d, 1H, H8); 7.22 (d, 2H, H4-aryl);
7.08 (dd, 2H, H5-aryl); 6.98 (d, 1H, H6-aryl); 6.73 (d, 1H, H7) 6.72 (d, 1H, H7); 6.34 (dd, 1H, H1'); 6.35 (dd, 1H, H1'); 5.46 (dt, 2H, H3'); 5.35-5.22 (m, 4H, H-benzyl); 4.55-4.40 (m, 4H, H5'); 4.23-4.15 (m, 2H, H4'); 2.54 (dd, 1H, H2'); 2.48 (dd, 1H H2'); 2.35 (q, 2H, H2-Dec); 2.34 (q, 2H, H2-Dec); 2.28 (s, 6H $\mathrm{CH}_{3}$-C3-aryl); 2.14 (ddd, 1H, H2"); 2.04 (ddd, 1H, H2'); 1.651.58 (m, 4H, H3-Dec); 1.28 (m, 24H, H 4-Dec - H9-Dec); 0.88 (t, 6H, H10-Dec); ${ }^{13}$ C NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.40$ (C1Dec); 173.38 (C1-Dec); 161.03 (C4); 161.02 (C4); 149.07 (C2); 148.55 (d, C2-aryl); 148.45 (d, C2-aryl); 136.79 (C6); 136.75 (C6); 131.62 (C4-aryl); 131.60 (C4-aryl); 128.07 (C7); 127.85 (d, C3-aryl); 127.82 (d, C3-aryl); 124.32 (C5-aryl); 124.30 (C5aryl); 123.07 (C6-aryl); 112.11 (C5); 112.06 (C5); 110.47 (C8); 110.38 (C8); 85.35 (C4'); 85.18 (C4'); 83.35 (C1'); 83.30 (C1'); 74.03 (C3'), 74.01 (C3'); 67.95 (d, C5'); 67.90 (d, C5'); 37.90 (C2'); 37.82 (C2'); 33.99 (C2-Dec); 31.80 (C4-Dec); 29.34 (C5Dec); 29.20 (C7-Dec); 29.18 (C6-Dec); 29.05 (C8-Dec); 24.72 (C3Dec); 22.62 (C9-Dec); 15.26 ( $\mathrm{CH}_{3}$-C3-aryl); 15.25 ( $\mathrm{CH}_{3}-\mathrm{C} 3$-aryl) 13.85 (C10-Dec); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-6.80 ;-6.94$ MS (FAB) m/z $668.9\left(\mathrm{M}-\mathrm{H}^{+}\right)$; UV $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 288.1$ nm, 248.0 nm ; $\lambda_{\min } 266.6 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) v 3417, 3407 3386, 3361, 3193, 3106, 3070, 2952, 2925, 2854, 1714, 1594, 1465, 1417, 1365, 1294, 1191, 1164, 1110, 1062, 1020, 941, 869, 852, 819, 769, 651, 530, 430; R f value $0.77\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ analytical HPLC $t_{R} 21.01 \mathrm{~min}$ ( $>97 \%$, gradient II).
cyclo(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-3'-O-levulinyl-2-deoxyuridinyl) phosphate (3-Me-cycloSal-3'-O-Lev-BVDUMP) 3g: yield 81\%; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.93$ (s, 2H, NH-BVU); 7.76 (s, 1H, H6); 7.75 (s, 1H, H6); 7.46 (d, 1H, H8); 7.44 (d, 1H, H8); 7.21 (d, 2H, H4-aryl); 7.08 (dd, 2H, H5-aryl); 6.96 (d, 2H, H6-aryl); 6.73 (d, 1H, H7); 6.71 (d, 1H, H7); 6.33 (dd, 1H, H1'); 6.32 (dd, 1H, H1'); 5.46 (dt, 2H, H3'); 5.35-5.22 (m, 4H, H-benzyl); 4.55-4.40 (m, 4H, H5'); 4.25-4.17 (m, 2H, H4'); 2.81-2.75 (m, 4H, H3-Lev); 2.23 (s, 6H, CH 3 -C3-aryl); 2.21 (s, 3H, H5-Lev); 2.20 (s, 3H, H5Lev); 2.20-2.00 (m, 4H, H2'); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 206.34 (C4-Lev); 172.40 (C1-Lev); 161.03 (C4); 149.03 (C2); 136.81 (C6); 131.62 (C4-aryl); 131.58 (C4-aryl); 128.07 (C7); 127.89 (C3-aryl); 127.78 (C3-aryl); 124.35 (C5-aryl); 124.31 (C5aryl); 123.06 (C6-aryl); 112.05 (C8); 112.02 (C8); 110.42 (C5); 110.32 (C5); 85.32 (C4'), 85.14 (C4'); 83.13 (C1'); 83.07 (C1'); 74.39 (C3'); 74.31 (C3'), 68.78 (d, C5'); 68.71 (d, C5'); 67.95 (d C-benzyl); 67.76 (d, C-benzyl); 37.75 (C2', C3-Lev); 29.71 (C5 Lev); 27.79 (C4-Lev); 15.31 ( $\mathrm{CH}_{3}$-C3-aryl); 15.26 ( $\mathrm{CH}_{3}-\mathrm{C} 3$-aryl) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-6.80$; -6.94; MS (FAB) m/z $611.03\left(\mathrm{M}-\mathrm{H}^{+}\right)$; UV $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 288.1 \mathrm{~nm}, 248.0 \mathrm{~nm}$ $\lambda_{\text {min }} 266.6 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) v 3424, 3199, 3104, 3070, 2969, 2927, 1714, 1594, 1467, 1409, 1365, 1294, 1189, 1159 1122, 1058, 1018, 943, 819, 773, 657, 433; $\mathrm{R}_{\mathrm{f}}$ value $0.63\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ ); analytical $\mathrm{HPLC}_{\mathrm{R}} 12.56$ min (>97\%, gradient II).

General Procedure for the Preparation of the cy-cloSal-BVDUMPs $\mathbf{4 a - m}$. To cleave the N-Boc-protecting group, triesters 7a-m, that were prepared according to triesters $3 \mathbf{a}-\mathbf{g}$, were dissolved in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$, mixed with 1 mL of trifluoroacetic acid, and stirred for 1.5 h at room temperature. The reaction mixtures were diluted with 20 mL of water and lyophilized. The residues were purified first by chromatography on silica gel plates on a chromatotron using a 1:9 mixture of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and second by gel filtration on Sephadex LH-20 (Fluka) using $\mathrm{CH}_{3} \mathrm{OH}$ as eluent.
cyclo(3-Methylsaligenyl)-5'-0-(E )-5-(2-bromovinyl)-2'-deoxy-3'O-glycinyluridinyl)phosphate (3-Me-cycloSal-3' Gly-BVDUMP) 4a: yield $27 \%$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO$\mathrm{d}_{6}$ ) $\delta 11.65$ (s, 2H, NH-BVU); 8.28 (s, 4H, NH ${ }_{2}$-Gly); 7.84 (s, 1H, H6); 7.83 (s, 1H, H6); 7.30 (d, 1H, H8); 7.29 (d, 1H, H8); 7.22 (m, 2H, H5-aryl); 7.05 (m, 4H, H4-aryl, H6-aryl); 6.84 (d, 1H, H7); 6.82 (d, 1H, H7); 6.19 (dd, 1H, H1); 6.18 (dd, 1H, H 1'); 5.45 (m, 4H, H-benzyl); 5.33 (m, 2H, H3'); 4.40 ( $\mathrm{m}, 4 \mathrm{H}$, H5'); 4.26 (m, 2H, H4'); 3.86 (s, 4H, H2-Gly); $2.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2^{\prime}\right)$; 2.20 (s, 3H, CH3-C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6 ) $\delta 167.33$ (C1-Gly); 161.76 (C4); 161.74 (C4); 149.37 (C2); 148.07 (d, C2-aryl); 148.01 (d, C2-aryl); 139.35 (C6); 139.27 (C6); 131.14 (C4-aryl); 131.11 (C4-aryl);
129.74 (C7); 129.72 (C7); 127.06 (C3-aryl); 126.98 (C3-aryl); 124.24 (C5-aryl); 124.22 (C5-aryl); 123.77 (C6-aryl); 123.74 (C6aryl); 121.05 (d, C1-aryl); 121.06 (d, C1-aryl); 110.53 (C5); 110.49 (C5); 107.40 (C8); 85.09 (C4'); 85.04 (C1'); 75.02 (C3'); 74.90 (C3'); 68.72 (d, C5'); 68.66 (d, C5'); 67.58 (C-benzyl); 67.38 (C-benzyl); 45.89 (C2-Gly); 35.98 (C2'); 35.83 (C2'); 15.07 ( $\mathrm{CH}_{3}$ C3-aryl); 15.00 ( $\mathrm{CH}_{3}$-C3-aryl ); ${ }^{31} \mathrm{P}$ NMR ( 202 MHz DMSO-d ) $\delta-7.76 ;-7.81$; MS (FAB) m/z 572.2; 574.2 ( $\mathrm{M}+\mathrm{H}^{+}$); UV (CH ${ }_{3}$ CN ) $\lambda_{\text {max }} 291.73 \mathrm{~nm}, 250.10 \mathrm{~nm}, 195.15 \mathrm{~nm} ; \lambda_{\text {min }} 268.42 \mathrm{~nm}$, 226.79 nm ; IR (KBr) v 3442, 3421, 3158, 3066, 3031, 2964, 2933, 2854, 2829, 1756, 1681, 1596, 1469, 1432, 1292, 1232, 1199, 1130, 1052, 1024, 1006, 944, 829, 800, 721; Rf value 0.60 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 8: 2\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}$ ( $94 \%$, gradient III).
cyclo(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2'-deoxy-3'-O-L-alanyluridinyl)phosphate (3-Me-cycloSal-3'-L-Ala-BVDUMP) 4b: yield 25\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO$\mathrm{d}_{6}$ ) $\delta 11.68$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}$ ); 8.45 (s, 4H, NH ${ }_{2}$-Ala); 7.85 ( s , 1H, H6); 7.84 (s, 1H, H6); 7.30 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.20 (m, 2H, H5-aryl); 7.12-7.05 (m, 4H, H4-aryl, H6aryl); 6.84 (d, 1H, H7); 6.81 (d, 1H, H7); 6.21 (dd, 1H, H 1); 6.19 (dd, 1H, H1'); 5.52-5.36 (m, 4H, H-benzyl); 5.34-5.28 (m, $2 \mathrm{H}, \mathrm{H}^{\prime}$ ); 4.48-4.33 (m, 4H, H5'); 4.29-4.23 (m, 2H, H4'); 4.14 (q, 1H, H2-Ala); 4.13 (q, 1H, H2-Ala); 2.52-2.17 (m, 4H, H2'); 2.20 (s, 3H, CH ${ }_{3}$-C3-aryl); 2.18 (s, 3H, CH3-C3-aryl); 1.38 (d, 3H, H3-Ala); 1.37 (d, 3H, H3-Ala); ${ }^{13} \mathrm{C}$ NMR ( 126 MHz, DMSO$\mathrm{d}_{6}$ ) $\delta 169.43$ (C1-Ala); 161.73 (C4); 161.71 (C4); 149.35 (C2); 149.34 (C2); 139.27 (C6); 139.18 (C6); 131.12 (C4-aryl); 131.09 (C4-aryl); 129.70 (C7); 129.68 (C7); 126.99 (d, C3-aryl); 127.98 (d, C3-aryl); 124.22 (C5-aryl); 124.21 (C5-aryl); 123.74 (C6aryl); 123.72 (C6-aryl); 121.09 (d, C1-aryl); 121.06 (d, C1-aryl); 110.51 (C5); 110.46 (C5); 107.37 (C8); 85.15 (C4'); 85.01 (C1'); 75.29 (C3'); 75.20 (C3'); 68.70 (d, C5'); 68.65 (d, C5'); 48.14 (C2-Ala); 36.14 (C2'); 35.98 (C2'); 15.68 (C3-Ala); 15.04 ( $\mathrm{CH}_{3}$ C3-aryl); 14.96 ( $\mathrm{CH}_{3}$-C3-aryl); ${ }^{31}$ P NMR ( 162 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\delta-7.75 ;-7.80$; MS (FAB) m/z 586.5; 588.6 ( $\mathrm{M}+\mathrm{H}^{+}$); UV ( $\mathrm{H}_{2} \mathrm{O}$ ) $\mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm} ; \mathrm{IR}$ (KBr) v 3424, 3178, 3075, 3029, 3018, 2956, 2854, 2827, 1752, 1681, 1596, 1465, 1436, 1367, 1290, 1236, 1199, 1132, 1052, 1024, 1002, 956, 946, 831, 800, 775, 721, 659, 532; R $\mathrm{R}_{\mathrm{f}}$ value $0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}$ (94\%, gradient III).
cycl o(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2'-deoxy-3'O-D-alanyluridinyl)phosphate (3-Me-cycloSal-3'-D-Ala-BVDUMP) 4c: yield $25 \%$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }_{6}$ ) 11.68 (s, 2H, NH-BVU); 8.55 (s, 4H, NH 2 -Ala); 7.85 (s, 1H, H6); 7.84 (s, 1H, H6); 7.30 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.20 (m, 2H, H5-aryl); 7.08-7.05 (m, 4H, H4 aryl, H6-aryl); 6.83 (d, 1H, H7); 6.81 (d, 1H, H7); 6.22-6.17 (m, 2H, H1'); 5.51-5.36 (m, 4H, H-benzyl); 5.30-5.26 (m, 2H, H3'); 4.45-4.33 (m, 4H, H5 '); 4.28-4.25 (m, 2H, H4'); 4.104.05 (m, 2H, H2-Ala); 2.52-2.32 (m, 4H, H2'); 2.20 (s, 3H, CH $3^{-}$ C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); 1.40 (d, 3H, H 3-Ala); 1.39 (d, 3H, H3-Ala); ${ }^{13}$ C NMR ( 126 MHz, DMSO-d 6 ) $\delta 169.43$ (C1Ala); 161.71 (C4); 149.34 (C2); 149.33 (C2); 139.36 (C6); 139.28 (C6); 131.10 (C4-aryl); 131.05 (C4-aryl); 129.70 (C7); 129.69 (C7); 126.98 (d, C3-aryl); 127.97 (d, C3-aryl); 124.19 (C5-aryl) 124.17 (C5-aryl); 124.12 (C6-aryl); 123.72 (C6-aryl); 121.09 (d, C1-aryl); 121.06 (d, C1-aryl); 110.49 (C5); 110.46 (C5); 107.34 (C8); 85.12 (C4'); 85.05 (C1'); 74.95 (C3'); 74.86 (C3'); 68.70 (d, C5'); 68.63 (d, C5'); 48.07 (C2-Ala); 35.95 (C2'); 35.80 (C2'); 15.95 (C3-Ala); 15.04 ( $\mathrm{CH}_{3}$-C3-aryl); 14.97 ( $\left.\mathrm{CH}_{3}-\mathrm{C} 3-a r y l\right)$ ); ${ }^{31} \mathrm{P}$ NMR ( 162 MHz, DMSO-d 6 ) $\delta-7.78 ;-7.84$ (s); MS (FAB) m/z 586.5; 588.6 (M + H+ ); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0$ $\mathrm{nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm} ;$ IR (KBr) $v 3424,3178,3075$, 3029, 3018, 2956, 2854, 2827, 1752, 1681, 1596, 1465, 1436, $1367,1290,1236,1199,1132,1052,1024,1002,956,946,831$, 800, 775, 721, 659, 532; $\mathrm{R}_{\mathrm{f}}$ value $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 7: 3\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}(94 \%$, gradient III).
cycl o(3-Methylsaligenyl)-5'-0-(E)-5-(2-bromovinyl)-2'-deoxy-3'-O-L-valinyluridinyl)phosphate (3-Me-cycloSal-3'-L-Val-BVDUMP) 4d: yield 32\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d $) \delta 11.68$ (s, 2H, NH-BVU); 8.28 (s, 4H, NH ${ }_{2}-\mathrm{Val}$ ); 7.85 (s, 1H, H6); 7.84 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d,

1H, H8); 7.25-7.21 (m, 2H, H5-aryl); 7.08-7.06 (m, 4H, H4 aryl, H6-aryl); 6.84 (d, 1H, H7); 6.83 (d, 1H, H7); 6.20 (dd, 1H H1'); 6.18 (dd, 1H, H $1^{\prime}$ ); 5.52-5.38 (m, 4H, H-benzyl); 5.365.33 (m, 2H, H3'); 4.45-4.33 (m, 4H, H5'); 4.27-4.24 (m, 2H, H4'); 3.93 (d, 2H, H2-Val ); 2.45-2.35 (m, 4H, H2'); 2.20 (s, 3H, $\mathrm{CH}_{3}$-C3-aryl); 2.18 (s, 3H, CH3-C3-aryl); 2.17-2.10 (m, 2H, H3Val); 0.96 (d, 2H, H4-Val); 0.93 (d, 2H, H4-Val); ${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 168.49$ (C1-Val); 161.74 (C4); 149.37 (C2); 139.32 (C6); 139.23 (C6); 131.14 (C4-aryl); 131.11 (C4-aryl); 129.74 (C7); 127.03 (C3-aryl); 126.95 (C3-aryl); 124.24 (C5 aryl); 123.74 (C6-aryl); 121.11 (d, C1-aryl); 121.02 (d, C1-aryl); 110.53 (C5); 110.47 (C5); 107.41 (C8); 85.13 (C4'); 85.09 (C1') 75.28 (C3'); 75.22 (C3'); 68.75 (d, C5'); 68.68 (d, C5'); 67.53 (d, C-benzyl); 67.31 (d, C-benzyl); 36.25 (C2'); 36.07 (C2'); 29.61 (C3-Val); 29.54 (C3-Val); 18.35 (C4-Val); 17.80 (C4-Val); 15.06 ( $\mathrm{CH}_{3}$-C3-aryl); 14.99 ( $\mathrm{CH}_{3}$-C3-aryl); ${ }^{31} \mathrm{P}$ NMR ( 202 MHz , DMSO-d 6 ) $\delta-7.77 ;-7.83 ;$ MS (FAB) m/z 614.6; 616.6 (M + $\mathrm{H}^{+}$); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}$, $224.7 \mathrm{~nm} ;$ IR (KBr) v 3432, 3424, 3168, 3068, 2971, 2854, 2829, 1749, 1687, 1631, 1596, 1467, 1432, 1369, 1288, 1199, 1132, 1051, 1024, 1004, 944, 829, 800, 721, 657, 532; $\mathrm{R}_{\mathrm{f}}$ value 0.37 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}(94 \%$, gradient III).
cyclo(3-Methylsaligenyl)-5'-0-(E )-5-(2-bromovinyl)-2' deoxy-3'-O-D-valinyluridinyl)phosphate (3-Me-cycloSal-$3^{3}$-d-Val-BVDUMP) 4e: yield 29\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }_{6}$ ) $\delta 11.67$ (s, 2H, NH-BVU); 8.36 ( $\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2}$-Val); 7.87 (s, 1H, H6); 7.86 (s, 1H, H6); 7.31 (d, 1H, H8); 7.30 (d, 1H, H8); 7.26-7.23 (m, 2H, H5-aryl); 7.10-7.08 (m, 4H, H4aryl, H6-aryl); 6.85 (d, 1H, H7); 6.84 (d, 1H, H 7); 6.22 (dd, 1H, H $1^{\prime}$ ); 6.21 (dd, 1H, H $1^{\prime}$ ); 5.53-5.40 (m, 4H, H-benzyl); 5.39$5.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}\right)$; 4.49-4.36 (m, 4H, $\mathrm{H}^{\prime}$ ); 4.29-4.26 (m, 2H, H4'); 3.95 (d, 1H, H2-Val); 3.94 (d, 1H, H2-Val); 2.45-2.35 (m, 4H, H2'); 2.22 (s, 3H, CH 3 -C3-aryl); 2.20 (s, 3H, CH 3 -C3-aryl); 2.19-2.16 (m, 2H, H3-Val); 0.99 (d, 2H, H4-Val); 0.97 (d, 2H, H4-Val); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 168.43$ (C1-Val); 161.73 (C4); 149.38 (C2); 139.33 (C6); 139.25 (C6); 131.14 (C4aryl); 131.10 (C4-aryl); 129.74 (C7); 127.04 (C3-aryl); 126.96 (C3-aryl); 124.24 (C5aryl); 123.74 (C6-aryl); 121.11 (C1-aryl); 121.01 (C1-aryl); 110.53 (C5); 110.49 (C5); 107.41 (C8); 85.04 (C4'); 84.99 (C1'); 75.22 (C3'); 75.12 (C3'); 68.75 (d, C5'); 68.65 (d, C5'); 67.51 (d, C-benzyl); 67.28 (d, C-benzyl); 35.92 (C2'); 35.76 (C2'); 29.56 (C3-Val); 18.34 (C4-Val); 17.78 (C4-Val); $15.07\left(\mathrm{CH}_{3}\right.$-C3-aryl); $15.00\left(\mathrm{CH}_{3}\right.$-C3-aryl); ${ }^{11}$ P NMR ( 202 MHz , DMSO-d 6 ) $\delta-7.78 ;-7.85$; MS (FAB) m/z 614.6; 616.6 (M + $\mathrm{H}^{+}$); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}$, 224.7 nm ; IR (KBr) v 3432, 3424, 3168, 3068, 2971, 2854, 2829, 1749, 1687, 1631, 1596, 1467, 1432, 1369, 1288, 1199, 1132, 1051, 1024, 1004, 944, 829, 800, 721, 657, 532; $\mathrm{R}_{\mathrm{f}}$ value 0.37 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}$ ( $94 \%$, gradient III).
cycl o(3-Methylsaligenyl)-5'-O-(E )-5-(2-bromovinyl)-2' deoxy-3-O-L-leucinyluridinyl)phosphate (3-Me-cycloSal-3'-L-Leu-BVDUMP) 4f: yield $35 \%$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }_{6}$ ) $\delta 8.09$ (s, 4H, NH2-Leu); 7.84 (s, 1H, H6); 7.83 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.20 (m, 2H, H5-aryl); 7.08-7.05 (m, 4H, H4-aryl, H6-aryl); 6.83 (d, 1H, H7); 6.82 (d, 1H, H7); 6.19 (dd, 1H, H 1'); 6.18 (dd, 1H, H1'); $5.51-$ 5.36 (m, 4H, H-benzyl); 5.33-5.29 (m, 2H, H3'); 4.45-4.33 (m, 4H, H5 ${ }^{\prime}$ ); 4.27-4.24 (m, 2H, H4'); 3.98 (t, 2H, H2-Leu); 2.452.35 (m, 4H, H2'); 2.20 (s, 3H, CH 3 -C3-aryl); 2.18 (s, 3H, CH $3_{3}$ C3-aryl); 1.74-1.53 (m, 6H, H3-Leu, H4-Leu); 0.91-0.87 (m, 12H, H5-Leu); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 168.93$ (C1Leu); 161.75 (C4); 149.39 (C2); 139.32 (C6); 139.23 (C6); 131.14 (C4-aryl); 129.74 (C7); 127.65 (d, C3-aryl); 127.25 (d, C3-aryl); 124.25 (C5-aryl); 124.23 (C5-aryl); 123.78 (C6-aryl); 123.75 (C6aryl); 121.12 (C1-aryl); 110.47 (C5); 107.41 (C8); 85.15 (C4'); 85.12 (C1'); 75.29 (C3'); 75.20 (C3'); 68.79 (C5'); 68.47 (Cbenzyl); 50.89 (C2-Leu); 36.23 (C2'); 35.95 (C2'); 31.38 (C3Leu); 24.01 (C4-Leu); 22.25 (C5-Leu); 22.15 (C5-Leu); 15.08 ( $\mathrm{CH}_{3}$-C3-aryl); $14.99\left(\mathrm{CH}_{3}-\mathrm{C} 3-\mathrm{aryl}\right)$; ${ }^{31} \mathrm{P}$ NMR ( 202 MHz , DMSO-d ${ }_{6}$ ) $\delta-7.77 ;-7.81$; MS (FAB) m/z 628.3; 630.3 (M + $\left.\mathrm{H}^{+}\right)$; UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}$, 224.7 nm; IR (KBr) $v 3436,3424,3320,3168,3160,3070,2964$,

2877, 1687, 1596, 1471, 1434, 1369, 1290, 1201, 1135, 1052, 1024, 1006, 944, 833, 798, 721; $\mathrm{R}_{\mathrm{f}}$ value $0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 9:1); analytical HPLC $t_{R} 12.03 \mathrm{~min}$ ( $94 \%$, gradient III).
cycl o(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2'-deoxy-3-O-D-leucinyluridinyl)phosphate (3-Me-cycloSal-3'-D-Leu-BVDUMP) 4g: yield 39\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }_{6}$ ) $\delta 8.31$ (s, 4H, NH 2 -Leu); 7.85 (s, 1H, H6); 7.84 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.20 (m, 2H, H5-aryl); 7.08-7.06 (m, 4H, H4-aryl, H6-aryl); 6.83 (d, 1H, H7); 6.82 (d, 1H, H 7); 6.22-6.17 (m, 2H, H 1'); 5.52-5.36 (m, 4H, H-benzyl); 5.33-5.29 (m, 2H, H3'); 4.48-4.32 (m, 4H, H5'); 4.26-4.24 (m, 2H, H4'); 4.00 (t, 2H, H2-Leu); 2.45-2.35 (m, $4 \mathrm{H}, \mathrm{H}^{\prime}$ ); 2.19 (s, 3H, CH3-C3-aryl); 2.18 (s, 3H, CH3-C3-aryl); 1.74-1.53 (m, 6H, H3-Leu, H4-Leu); 0.91-0.87 (m, 12H, H5Leu); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ) $\delta 169.47$ (C1-Leu); 161.75 (C4); 161.73 (C4); 149.37 (C2); 139.32 (C6); 139.24 (C6); 131.14 (C4-aryl); 131.09 (C4-aryl); 129.69 (C7); 127.04 (C3-aryl); 126.96 (C3-aryl); 124.23 (C5-aryl); 124.21 (C5-aryl); 123.78 (C6aryl); 121.04 (C1-aryl); 121.02 (C1-aryl); 110.53 (C5); 110.49 (C5); 107.41 (C8); 85.05 (C4'); 84.99 (C1'); 75.29 (C3'); 75.16 (C3'); 68.75 (d, C5'); 68.63 (d, C5'); 67.53 (C-benzyl); 67.36 (Cbenzyl); 50.79 (C2-Leu); 36.70 (C2'); 35.70 (C2'); 30.87 (C3Leu); 24.00 (C4-Leu); 22.21 (C5-Leu); 22.19 (C5-Leu); 15.07 ( $\mathrm{CH}_{3}$-C3-aryl); $14.99\left(\mathrm{CH}_{3}\right.$-C3-aryl); ${ }^{31} \mathrm{P}$ NMR ( 202 MHz , DMSO-d ${ }_{6}$ ) $\delta-7.78 ;-7.84$; MS (FAB) m/z 628.3; 630.3 (M + $\mathrm{H}^{+}$); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}$, 224.7 nm ; IR (K Br) $v 3436,3424,3320,3168,3160,3070,2964$, 2877, 1687, 1596, 1471, 1434, 1369, 1290, 1201, 1135, 1052, 1024, 1006, 944, 833, 798, 721; $\mathrm{R}_{\mathrm{f}}$ value $0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 9:1); analytical HPLC $t_{R} 12.03 \mathrm{~min}$ ( $94 \%$, gradient III).
cycl o(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2-deoxy-3'-0-L-isoleucinyluridinyl)phosphate (3-Me-cycloSal-3'-L-Ile-BVDUMP) 4h: yield 25\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO-d ${ }^{6}$ ) $\delta 11.65$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}$ ); 8.01 ( $\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2^{-}}$ Ile); 7.85 (s, 1H, H6); 7.84 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.22 (m, 2H, H5-aryl); 7.08-7.06 (m, 4H, H4-aryl, H6-aryl); 6.84 (d, 1H, H7); 6.83 (d, 1H, H7); 6.19 (dd, 1H, H1'); 6.18 (dd, 1H, H1'); 5.51-5.36 (m, 4H, H-benzyl); 5.35-5.30 (m, 2H, H3'); 4.44-4.33 (m, 4H, H5'); 4.27-4.24 (m, $2 \mathrm{H}, \mathrm{H} 44^{\prime}$ ); 3.94 (d, $2 \mathrm{H}, \mathrm{H} 2-\mathrm{Ile}$ ); 2.45-2.35 (m, 4H, H2'); 2.20 (s, 3H, CH 3 -C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); 1.87-1.82 (m, 2H, H3-Ile); 1.48-1.40 (m, 2H, H $4_{A}-$ Ile); 1.29-1.20 (m, $2 \mathrm{H}, \mathrm{H} 4_{\mathrm{B}^{-}}$ Ile); 0.90-0.86 (m, 12H, H5-Ile, H6-Ile); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d ${ }_{6}$ ) $\delta 168.72$ (C1-I Ie); 161.72 (C4); 149.33 (C2); 139.30 (C6); 139.20 (C6); 131.10 (C4-aryl); 129.70 (C7); 127.02 (C3aryl); 126.96 (C3-aryl); 124.23 (C5-aryl); 124.22 (C5-aryl); 123.74 (C6-aryl); 123.72 (C6-aryl); 121.10 (d, C1-aryl); 121.02 (d, C1-aryl); 110.53 (C5); 110.47 (C5); 107.39 (C8); 85.13 (C4'); 85.09 (C1'); 75.18 (C3'); 75.11 (C3'); 68.75 (d, C5'); 68.71 (d, C5'); 67.51 (d, C-benzyl); 67.30 (d, C-benzyl); 56.52 (C2-Ile); 36.35 (C2'); 36.24 (C2'); 25.34 (C4-I Ie); 22.25 (C5-Leu); 22.15 (C5-Leu); 15.08 (CH3-C3-aryl); 14.99 (CH3-C3-aryl); 14.48 (C4Ile); 11.61 (C5-IIe); ${ }^{31}$ P NMR ( $162 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ ) $\delta-7.77$; -7.84; MS (FAB)m/z 628.5; $630.5\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3}{ }^{-}\right.$ CN) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm} ;$ IR (KBr) v 3436, 3261, 3249, 3180, 3068, 2967, 2931, 2884, 2854, 1685, 1639, 1596, 1467, 1284, 1201, 1132, 1056, 1024, 944, 800, 721, 657, 532; Rf value $0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $t_{R} 12.03 \mathrm{~min}(94 \%$, gradient III).
cycl o(3-Methylsaligenyl)-5'-O-(E )-5-(2-bromovinyl)-2-deoxy-3'-0-D-isoleucinyluridinyl)phosphate (3-Me-cycloSal-3'-D-Ile-BVDUMP) 4i: yield $25 \%$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO-d ${ }^{2}$ ) $\delta 11.65$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}$ ); 8.03 (s, 4H, NH2Ile); 7.85 (s, 1H, H6); 7.84 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.21 (m, 2H, H5-aryl); 7.08-7.06 (m, 4H, H4-aryl, H6-aryl); 6.84 (d, 1H, H7); 6.83 (d, 1H, H7); 6.19 (dd, 1H, H1 ); 6.18 (dd, 1H, H1'); 5.52-5.38 (m, 4H, H-benzyl); 5.35-5.30 (m, 2H, H3'); 4.47-4.33 (m, 4H, H5'); 4.27-4.24 (m, 2H, H4'); 3.97-3.93 (m, 2H, H2-Ile); 2.45-2.35 (m, 4H, H2'); 2.20 (s, 3H, CH ${ }_{3}$-C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); 1.86-1.84 (m, 2H, H3-I le); 1.50-1.40 (m, 2H, H4 $4_{\mathrm{A}}$-l e); 1.29-1.20 (m, 2H, H4 ${ }_{\mathrm{B}}$-Ile); $0.91-0.86$ (m, 12H, H5-Ile, H6-IIe); ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 168.72$ (C1-Ile); 161.72 (C4); 149.33 (C2); 139.30 (C6); 139.20 (C6); 131.10 (C4-aryl); 129.70 (C7); 127.02
(C3-aryl); 126.96 (C3-aryl); 124.23 (C5-aryl); 124.22 (C5-aryl); 123.74 (C6-aryl); 123.72 (C6-aryl); 121.10 (d, C1-aryl); 121.02 (d, C1-aryl); 110.53 (C5); 110.47 (C5); 107.39 (C8); 85.13 (C4'); 85.09 (C1'); 75.18 (C3'); 75.11 (C3'); 68.75 (d, C5'); 68.71 (d, C5'); 67.51 (d, C-benzyl); 67.30 (d, C-benzyl); 56.52 (C2-Ile); 36.35 (C2'); 36.24 (C2'); 25.34 (C4-Ile); 15.08 ( $\mathrm{CH}_{3}$-C3-aryl); $14.99\left(\mathrm{CH}_{3}\right.$-C3-aryl); 14.48 (C4-Ile); 11.61 (C5-IIe); ${ }^{31}{ }^{31}$ NMR ( $162 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta-7.79 ;-7.87$; MS (FAB) $\mathrm{m} / \mathrm{z} 628.5$; $630.5\left(\mathrm{M}+\mathrm{H}^{+}\right) ; U V\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ;$ $\lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) $v 3436,3261,3249,3180$, 3068, 2967, 2931, 2884, 2854, 1685, 1639, 1596, 1467, 1284, 1201, 1132, 1056, 1024, 944, 800, 721, 657, 532; Rf value 0.32 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}(94 \%$, gradient III).
cyclo(3-Methylsaligenyl)-5'-O-(E )-5-(2-bromovinyl)-2'deoxy-3'-O-L-phenylalanyluridinyl)phosphate (3-Me-cycloSal-3'-L-Phe-BVDUMP) 4j: yield 61\%; ${ }^{1}$ H NMR (500 MHz, DMSO-d ${ }^{2}$ ) $\delta 7.85$ (s, 1H, H6); 7.84 (s, 1H, H6); 7.30-7.0 (m, 18H, H8, H4-aryl, H5-aryl,H6-aryl, H-aryl-Phe); 6.83 (d, 1H, H7); 6.81 (d, 1H, H7); 6.07-6.03 (m, 2H, H1'); 5.51-5.32 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}$-benzyl); 5.14-5.08 (m, 2H, H3'); 4.32-4.22 (m, 4H H5'); 3.91-3.88 (m, 2H, H2-Phe); 3.77-3.73 (m, 2H, H4'); 2.92-2.83 (m, 4H, H3-Phe); 2.41-2.23 (m, 4H, H2'); 2.20 ( s , 3H, CH3-C3-aryl); 2.18 (s, 3H, CH3-C3-aryl); ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d ${ }_{6}$ ) $\delta 168.15$ (C1-Phe); 160.96 (C4); 148.23 (C2) 139.26 (C6); 139.12 (C6); 131.14 (C4-aryl); 131.08 (C4-aryl); 130.12 (C4-Phe); 129.73 (C7); 129.42 (C5-Phe); 128.43 (C6Phe); 126.98 (C3-aryl); 126.76 (C3-aryl); 124.21 (C5-aryl); 123.73 (C6-aryl); 121.16 (C1-aryl); 110.47 (C5); 110.43 (C5); 107.33 (C8); 84.97 (C4', C1'); 73.69 (C3'); 68.83 (C5'); 68.71 (C5'); 49.02 (C2-Phe); 35.67 (C2'); 30.78 (C3-Phe); 15.08 ( $\mathrm{CH}_{3}-$ C3-aryl); ${ }^{31}$ P NMR ( 162 MHz, DMSO-d ${ }_{6}$ ) $\delta-7.83,-7.85$; MS (FAB) m/z 662.7; $630.7\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\max } 289.6$ $\mathrm{nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }}: 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) $v$ 3434, 3261, 3228, 3208, 3197, 3185, 3170, 3062, 3029, 2985, 2964, 2937, 2854, 2832, 1752, 1687, 1631, 1596, 1467, 1286, 1230, 1199, 1132, 1054, 1024, 1004, 944, 800, 759, 721, 659, 532; R ${ }_{f}$ value $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 7: 3\right)$; analytical $\mathrm{HPLC}_{\mathrm{R}} 12.03 \mathrm{~min}$ (94\%, gradient III).
cyclo(3-Methylsaligenyl)-5'-0-(E )-5-(2-bromovinyl)-2'-deoxy-3'O-d-phenylalanyluridinyl)phosphate (3-Me-cycloSal-3'-D-Phe-BVDUMP) 4k: yield 50\%; ${ }^{1}$ H NMR (500 $\mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 11.65$ (s, 2H, NH-BVU); 9.24 ( $\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2}$ Phe); $7.80(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 6)$; $7.30-7.0$ (m, 18H, H8, H4-aryl, H5aryl, H6-aryl, H-aryl-Phe); 6.82 (d, 1H, H7); 6.80 (d, 1H, H7); 6.05 (dd, 1H, H 1'); 6.04 (dd, 1H, H1'); 5.43 (m, 4H, H-benzyl); 5.19 (m, 2H, H3'); $4.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\prime}\right) ; 4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4^{\prime}\right) ; 4.11$ (s, 2H, H2-Phe); 3.61 (m, 4H, H 3-Phe); 2.25 (m, 4H, H2'); 2.19 (s, 3H, CH 3 -C3-aryl); 2.17 (s, 3H, CH 3 -C3-aryl); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{2}$ ) $\delta 168.15$ (C1-Phe); 161.77 (C4); 149.34 (C2); 139.34 (C6); 139.23 (C6); 131.15 (C4-aryl); 131.10 (C4-aryl); 129.74 (C4-Phe); 129.73 (C7); 129.74 (C5-Phe); 128.82 (C6Phe); 127.06 (C3-aryl); 126.98 (C3-aryl); 124.22 (C5-aryl); 123.75 (C6-aryl); 121.12 (C1-aryl); 110.53 (C5); 110.49 (C5); 107.40 (C8); 85.02 (C4'); 84.95 (C1'); 75.08 (C-benzyl); 74.83 (C-benzyl); 73.50 (C3'); 73.18 (C3'); 68.81 (C5'); 68.68 (C5'); 53.69 (C2-Phe); 53.45 (C2-Phe); 36.17 (C2'); 35.71 (C2'); 35.68 (C3-Phe); 35.53 (C3-Phe); $15.08\left(\mathrm{CH}_{3}\right.$-C3-aryl); $15.00\left(\mathrm{CH}_{3}-\mathrm{C} 3-\right.$ aryl); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta-7.84$; -7.91 ; MS (FAB) m/z 662.7; $630.7\left(\mathrm{M}+\mathrm{H}^{+}\right)$; UV $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 289.6$ $\mathrm{nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm}$; IR (KBr) $v 3434,3261$, 3228, 3208, 3197, 3185, 3170, 3062, 3029, 2985, 2964, 2937, 2854, 2832, 1752, 1687, 1631, 1596, 1467, 1286, 1230, 1199, 1132, 1054, 1024, 1004, 944, 800, 759, 721, 659, 532; R $\mathrm{R}_{\mathrm{f}}$ value $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}(94 \%$, gradient III).
cyclo(3-Methylsaligenyl)-5'-0-(E)-5-(2-bromovinyl)-2' deoxy-3'O-L-prolinyluridinyl)phosphate (3-Me-cycloSal-3'-L-Pro-BVDUMP) 41: yield 43\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }_{6}$ ) $\delta 11.65$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{BVU}$ ); 9.25 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}-\mathrm{Pro}$ ); 7.85 (s, 1H, H6); 7.84 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.21 (m, 2H, H5-aryl); 7.08-7.06 (m, 4H, H4aryl, H6-aryl); 6.83 (d, 1H, H7); 6.81 (d, 1H, H7); 6.19 (dd, 1H, H $1^{\prime}$ ); 6.17 (dd, 1H, H1'); 5.53-5.35 (m, 4H, H-benzyl); 5.32-
5.30 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 3^{\prime}$ ); 4.47-4.33 (m, 6H, H5', H2-Pro); 4.27-4.24 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 4^{\prime}$ ); 3.25-3.19 (m, 4H, H5-Pro); 2.45-2.39 (m, 4H, H2'); 2.28-2.17 (m, 4H, H3-Pro); 2.20 (s, 3H, CH ${ }_{3}$-C3-aryl); 2.18 (s, 3H, CH 3 -C3-aryl); 1.93-1.86 (m, 2H, H4-Pro); ${ }^{13}$ C NMR ( 126 MHz, DMSO-d ${ }_{6}$ ) $\delta 168.40$ (C1-Pro); 161.70 (C4); 149.33 (C2); 139.31 (C6); 139.21 (C6); 131.12 (C4-aryl); 131.08 (C4aryl); 129.67 (C7); 127.03 (C3-aryl); 127.00 (C3-aryl); 124.21 (C5-aryl); 123.73 (C6-aryl); 123.71 (C6-aryl); 121.11 (d, C1aryl); 121.04 (d, C1-aryl); 110.50 (C5); 110.44 (C5); 107.37 (C8); 85.19 (C4'); 85.15 (C4'); 81.82 (C1'); 81.70 (C1'); 75.55 (C3'); 75.45 (C3'); 68.72 (d, C5'); 68.63 (d, C5'); 67.64 (d, C-benzyl); 67.46 (d, C-benzyl); 58.83 (C2-Pro); 45.85 (C5-Pro); 36.07 (C2'); 35.90 (C2'); 27.76 (C3-Pro); 23.18 (C4-Pro); 15.08 ( $\mathrm{CH}_{3}-\mathrm{C} 3-$ aryl); $14.99\left(\mathrm{CH}_{3}-\mathrm{C} 3-a r y l\right)$ ) ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{DMSO}_{6}$ - $\delta$ -7.77; - 7.80; MS (FAB) m/z 612.1; 614.1 (M + H+ ); UV ( $\mathrm{H}_{2} \mathrm{O} /$ $\mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm} ; \lambda_{\text {min }} 268.8 \mathrm{~nm}, 224.7 \mathrm{~nm} ;$ IR (KBr) v 3424, 3178, 3066, 3029, 2992, 2962, 2823, 1749, 1687, 1594, 1467, 1367, 1292, 1232, 1197, 1130, 1052,1024, 1006, 944, 827, 798, 773, 719, 659, 430; $\mathrm{R}_{\mathrm{f}}$ value $0.70\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 9:1); analytical HPLC $t_{R} 12.03 \mathrm{~min}$ ( $94 \%$, gradient III).
cycl o(3-Methylsaligenyl)-5'-O-(E)-5-(2-bromovinyl)-2'-deoxy-3-O-d-prolinyluridinyl)phosphate (3-Me-cycloSal-3'-d-Pro-BVDUMP) 4m: yield 43\%; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-d ${ }_{6}$ ) $\delta 11.65$ (s, 2H, NH-BVU); 9.25 (s, 2H, NH ${ }_{2}$-Pro); 7.86 (s, 1H, H6); 7.85 (s, 1H, H6); 7.29 (d, 1H, H8); 7.28 (d, 1H, H8); 7.25-7.21 (m, 2H, H5-aryl); 7.08-7.06 (m, 4H, H4aryl, H6-aryl); 6.83 (d, 1H, H7); 6.81 (d, 1H, H7); 6.20-6.16 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{Hl}^{\prime}$ ); 5.52-5.35 (m, 4H, H-benzyl); 5.32-5.27 (m, 2H, H3'); 4.47-4.33 (m, 6H, H5', H 2-Pro); 4.27-4.24 (m, 2H, H4'); 3.25-3.16 (m, 4H, H5-Pro); 2.45-2.39 (m, 4H, H2'); 2.28-2.17 (m, 4H, H3-Pro); 2.20 (s, 3H, CH 3 -C3-aryl); 2.18 (s, 3H, CH $3^{-}$ C3-aryl); 1.93-1.86 (m, 2H, H4-Pro); ${ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO-d ${ }_{6}$ ) $\delta 168.53$ (C1-Pro); 161.78 (C4); 161.75 (C4); 149.41 (C2); 149.37 (C2); 148.05 (d, C2-aryl); 147.90 (d, C2-aryl); 139.35 (C6); 139.27 (C6); 131.13 (C4-aryl); 131.09 (C4-aryl); 129.70 (C7); 127.05 (C3-aryl); 126.97 (C3-aryl); 124.22 (C5aryl); 123.75 (C6-aryl); 123.73 (C6-aryl); 121.14 (d, C1-aryl); 121.03 (d, C1-aryl); 110.53 (C5); 110.48 (C5); 107.41 (C8); 85.10 (C4'); 85.05 (C4'); 81.82 (C1'); 81.70 (C1'); 75.45 (C3'); 75.37 (C3'); 69.79 (C5'); 68.67 (C-benzyl); 68.60 (C-benzyl); 58.87 (C2Pro); 58.81 (C2-Pro); 45.88 (C5-Pro); 45.74 (C5-Pro); 35.95 (C2'); 27.86 (C3-Pro); 27.82 (C3-Pro); 23.26 (C4-Pro); 15.07 ( $\mathrm{CH}_{3}$-C3-aryl); 14.98 ( $\mathrm{CH}_{3}$-C3-aryl); ${ }^{31} \mathrm{P}$ NMR ( 162 MHz , DMSO-d ${ }_{6}$ ) $\delta-7.89 ;-7.83$; (FAB) $\mathrm{m} / \mathrm{z}$ 612.1, 614.1 ( $\mathrm{M}+\mathrm{H}^{+}$); UV ( $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) $\lambda_{\text {max }} 289.6 \mathrm{~nm}, 248.0 \mathrm{~nm}$; $\lambda_{\text {min }} 268.8 \mathrm{~nm}$, 224.7 nm ; IR (K Br) $v 3424,3178,3066,3029,2992,2962,2823$, 1749, 1687, 1594, 1467, 1367, 1292, 1232, 1197, 1130, 1052, 1024, 1006, 944, 827, 798, 773, 719, 659, 430; Rf value 0.70 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; analytical HPLC $\mathrm{t}_{\mathrm{R}} 12.03 \mathrm{~min}$ (94\%, gradient III).
Determination of the Partition Coefficients (log P Values). Log P values were determined as follows: a sample of the compounds 2, 3, or $\mathbf{4}$ was dissolved in 0.3 mL of 1 -octanol. To this solution were added 0.3 mL of water. This mixture was vigorously vortexed for 10 min , and the two phases were separated by centrifugation (2 min at 13400 rpm ). Aliquots were analyzed by analytical HPLC (Merck LiChroCART col umn, LiChrospher 100 reversed-phase silica gel RP18 endcapped ( $5 \mu \mathrm{~m}$ ), gradient $0-100 \% \mathrm{CH}_{3} \mathrm{CN}$ in water ( $0-$ 20 min ), $100 \% \mathrm{CH}_{3} \mathrm{CN}\left(20-22 \mathrm{~min}\right.$ ), $0 \% \mathrm{CH}_{3} \mathrm{CN}$ in water ( $22.1-35 \mathrm{~min}$ ), flow $0.5 \mathrm{~mL}, \mathrm{UV}$ detection at 250 nm ). The $P$ values were calculated by integration of the peaks of the aqueous and organic phase.

Kinetic Data. (a) Aqueous Buffers. $12 \mu \mathrm{~L}$ of DMSO stock solutions ( 50 mM ) of the triesters were diluted in $300 \mu \mathrm{~L}$ of water or water/DMSO ( $c=2.0 \mathrm{mM}$ ). 0.3 mL of this solution were added to 0.3 mL of aqueous buffer ( 50 mM phosphate buffer, pH 7.3 or 50 mM phosphate buffer, pH 6.8 ) containing $5 \mu \mathrm{~L}$ of an aqueous AZT solution (AZT as internal standard) at $37{ }^{\circ} \mathrm{C}$. The final concentrations were 0.96 mM for the triesters and 25 mM for the aqueous buffer. Aliquots of $60 \mu \mathrm{~L}$ of the hydrol ysis mixture were taken, and the hydrolysis was stopped by addition of $5 \mu \mathrm{~L}$ of glacial acetic acid and frozen in liquid air. After being thawed, samples were analyzed by
analytical HPLC (Merck LiChroCART column, LiChrospher 100 reversed-phase silica gel RP-18 endcapped ( $5 \mu \mathrm{~m}$ ); UV detection at 250 nm ). The hydrolysis of the compounds 2-4 was followed by integration of the peak areas in the HPLC chromatograms. The rate constants k were determined from slope of the logarithmic degradation curve. The half-lives ( $\mathrm{t}_{1 / 2}$ ) were calculated by using the rate constants $k$.
(b) P3HR-1 Cell Extract. 1.5 mM stock solution of the triesters in DMSO were prepared. $20 \mu \mathrm{~L}$ of this stock solution was mixed with $100 \mu \mathrm{~L}$ of cell extract and $20 \mu \mathrm{~L}$ of a 70 mM magnesium chloride solution. The hydrolysis process was stopped after 8 h by addition of $300 \mu \mathrm{~L}$ of acidic methanol and storage for 5 min at $0{ }^{\circ} \mathrm{C}$. The mixtures were centrifuged by 13000 rpm for 10 min , and the supernatant was analyzed as mentioned above.
(c) Human Sera: The studies were performed as descri bed in (b) but instead of cell extracts $10 \%$ of human serum in phosphate buffer, pH 6.8 a was used, and the data were collected in the same way.

Anti-EBV Evaluation. (a) Cell Cultures. The EBV producer cell lineP3HR-1, the EBV genome carrying cell lines Raji and Namal wa as well as the EBV negative cell line Ramos were grown in RPMI-1640 medium supplemented with $10 \%$ heat-inactivated FCS, l-glutamine and antibiotics at $36.5^{\circ} \mathrm{C}$ in a humidified $5 \% \mathrm{CO}_{2}$-containing atmosphere. The latter three cell lines served only as controls in the hybridization technique. Ramos is an EBV-negative cell line. Namalwa is an EBV genome carrying cell line with two EBV genome copies per cell. Raji cells are also EBV positive with about 30-60 EBV genome copies per cell. After hybridization with an EBV specific probe and detection Ramos cells give no signal, Namalwa cells give a very weak signal and Raji cells give a moderate signal.
(b) Exposure of P3HR-1 Cells to Drugs. Exponentially growing P3HR-1 cells were centrifuged, resuspended in fresh medium and seeded at a density of $10^{6}$ cells $/ \mathrm{mL}$ in $25 \mathrm{~cm}^{2}$ cell culture flasks. The tumor promotor 12-O-tetradecanoyl phorbol-13-acetate (TPA, Sigma) was added at a concentration of 20 $\mathrm{ng} / \mathrm{mL}$ to induce virus production. ${ }^{31}$ Cell cultures were incubated with compounds at different concentrations for 7 days.
(c) DNA Isolation. Control and drug treated cells were pelleted, washed twice with PBS, and resuspended in $200 \mu \mathrm{~L}$ of PBS. DNA was extracted using a DNA extraction kit (QIAamp DNA Blood Minikit, Qiagen). DNA concentration was determined by UV spectrometry.
(d) Slot Blot Hybridization. Ten micrograms of total cellular DNA of drug treated P3HR-1 cells and control cells were used to determine the EBV DNA content. The slot blot hybridization assay was done as described previously ${ }^{32}$ using $30 \mathrm{ng} / \mathrm{mL}$ of a digoxigenin-11-dUTP-labeled probe specific for the Bam $\mathrm{H} 1-\mathrm{W}$-fragment of the EBV genome. After hybridization chemiluminescence detection was carried out followed by 30 min exposition to a Kodak film. The amount of EBV DNA was measured using a densitometer (MWG Biotech). Then, the EBV DNA concentration was compared between drug-treated and nontreated P3HR-1 cells and the 50\% effective concentration ( $\mathrm{EC}_{50}$ ) for inhibition of EBV replication was calculated by regression analysis.
(e) Determination of $\mathrm{CC}_{50}$ for Cell Growth. P3HR-1 cells were grown for 7 days in the presence of test compounds at different concentrations from an initial density of $2 \times 10^{5}$ cells/ mL in 96 -well plates. Cell numbers were determined using a Coulter Z-2 particle counter and 50\% inhibitory concentrations for cell growth $\left(\mathrm{CC}_{50}\right)$ were calculated.

## References

(1) Elion, G. B.; Furman, P. A.; Fyfe, J. A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc. Natl. Acad. Sci. USA 1977, 74, 5716-5720.
(2) Wagstaff, A.; Faulds, D.; Goa, K. L. Acyclovir: A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1994, 47, 153-205.
(3) Alrabiah, F. A.; Sacks, S. L. New antiherpesvirus Agents: Their targets and therapeutic potential. Drugs 1996, 52, 17-32.
(4) Okano, M.; Matsumoto, S.; Osato, T.; Sakiyama, Y.; Thiele, G. M.; Purtilo, D. T. Severe chronic active Epstein-Barr virus infection syndrome. Clin. Microbiol. Rev. 1991, 4, 129-135.
(5) Anagnostopoulos, A.; Hummel, M. Epstein-Barr virus in tumors. Histo-Pathol. 1996, 29, 297-315.
(6) (a) Leoncini, L.; Vindigni, C.; Megha, T.; Funto, I.; Pacenti, L.; Musaro, M.; Renieri, A.; Seri, M.; Anagnostopoulos, J.; Tosi, P. Epstein-Barr virus and gastric cancer: data and unanswered questions. Int. J. Cancer 1993, 53, 898-901. (b) Osato, T.; I mai, S. Epstein-Barr virus and gastric carcinoma. Sem. Cancer Biol. 1996, 7, 175-182.
(7) Brandwein, M.; Nuovo, G; Ramer, M.; Orlowski, W.; Miller, L. Epstein-Barr virus reactivation in hairy leucoplakia. Mod. Pathol. 1996, 9, 298-303.
(8) (a) Burkitt, D. B.; Sarcoma involving jaws in African children. Br. J. Surg. 1958, 46, 218-223. (b) Epstein, M. A.; Achong, B. G.; Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964, I, 702-703.
(9) zur Hausen, H.; Schulte-Holthausen, H.; Klein, G.; Henle, W.; Henle, G.; Clifford, P.; Santesson, L. EBV DNA in biopsies of Burkitt tumors and anaplastic carcinomas of nasopharynx. Nature 1970, 228, 1056-1058.
(10) Shibata, D.; Weiss, L. M.; Hernandez, A. M.; Nathwani, B. N.; Bernstein, L.; Levine, A. M. Epstein-Barr virus associated nonHodgkin's lymphoma in patients infected with human immunodeficiency virus. Blood 1993, 81, 2102-2109.
(11) Su, I.-J.; Hsieh, H.-C.; Lin, K.-H.; Uen, W.-C.; Kao, C.-L.; Chen, C.-J .; Cheng, A.-L.;Kadin, M. E.; Chen, J .-Y. Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathological and molecular analysis. Blood 1991, 77, 799808.
(12) (a) Savage, P; Waxman, J. Post-transplantation Iymphoproliferative disease. Quart. J. Med. 1997, 90, 497-503. (b) Cao, S.; Cox, K; Esquivel, C. O.; Berquist, W.; Concepcion, W.; Ojogho, O.; Monge, H; Krams, S.; Martinez, O.; So, S. Posttransplant lymphoproliferative disorders and gastrointestinal manifestions of Epstein-Barr virus infection in children following liver transplantation. Transplantation 1998, 66, 851-856.
(13) (a) Niedobitek, G. The role of Epstein-Barr virus in the pathogenesis of Hodgkin's disease. Ann. Oncol. Suppl. 1996, 74, S11-S17. ( b) Glaser, S. L.; Lin, R. J.; Stewart, S. L.; Ambinder, R. F.; J arrett, R. F.; Brousset, P.; Pallesen, G.; Gulley, M. L.; Khan, G.; O'Grady, J .; Hummel, M.; Preciado, M. V.; Knecht, H.; Chan, J. K. C.; Claviez, A. Epstein-Barr virus-associated Hodgkin's disease: epidemiologic characteristics in international data. Int. J. Cancer 1997, 70, 375-382.
(14) Meerbach, A.; Gruhn, B.; Egerer, R.; Reischl, U.; Zintl, F.; Wutzler, P. Semiquantitative PCR analysis of Epstein-Barr virus DNA in clinical samples of patients with EBV-associated diseases. J. Med. Virol. 2001, 65, 348-357.
(15) De Clercq, E.; Descamps, J ; De Somer, P.; Barr, P. J .; J ones, A. S.; Walker, R. T. (E)-5-(2-bromovinyl)-2'-deoxyuridine: a potent and selective anti-herpes agent. Proc. Natl. Acad. Sci. USA 1979, 76, 2947-2951.
(16) Balzarini, J. Pharm. World Sci. 1994, 16, 113-126.
(17) Wutzler, P. Antiviral theraphy of herpes simplex and varicellazoster virus infections. Intervirology 1997, 40, 3437-356.
(18) De Clercq, E. In search of selective antiviral chemotherapy. Clin. Microbiol. Rev. 1997, 10, 674-693.
(19) (a) Meier, C. Pro-Nucleotides - Recent advances in the design of efficient tools for the delivery of biologically active nucleoside monophosphates. Synlett 1998, 233-242. (b) Périgaud, C.; Giradet, J.-L.; Gosselin, G.; I mbach, J .-L. Comments on nucleotide delivery forms. In Advances in Antiviral Drug Design; De Clercq, E., Ed.; J AI Press Inc.: Greenwich, London, 1996; Vol. 2, pp 147-172.
(20) Meier, C. 2-Nucleos-5'-O-yl-4H-1,3,2-benzodioxaphosphinin-2oxides - A new concept for lipophilic, potential prodrugs of biologically active nucleoside monophosphates. Angew. Chem., Int. Ed. Engl. 1996, 35, 70-72.
(21) (a) Meier, C.; Lorey, M.; De Clercq, E.; Balzarini, J. cycloSal$2^{\prime}, 3^{\prime}$-dideoxy-2', 3'-didehydrothymidine monophosphate (cycloSald4TMP): Synthesis and antiviral evaluation of a new d4TMP delivery system. J. Med. Chem. 1998, 41, 1417-1427. (b) Meier, C.; Knispel, T.; De Clercq, E.; Balzarini, J. cycloSal-Pronucleotides of $2^{\prime}, 3^{\prime}$-dideoxyadenosine and $2^{\prime}, 3^{\prime}$-dideoxy-2', $3^{\prime}$-didehydroadenosine: Synthesis and antiviral evaluation of a highly efficient nucleotide delivery system. J. Med. Chem. 1999, 42, 1604-1614. (c) Meier, C.; Knispel, T.; Marquez, V. E.; Siddiqui, M. A.; De Clercq, E.; Balzarini, J. cycloSal-Pronucleotides of 2'-fluoro-ara- and $2^{\prime}$-fluoro-ribo-2', $3^{\prime}$-dideoxyadenosine as a strategy to bypass a metabolic blockade. J. Med. Chem. 1999, 42, 16151624. (d) Meier, C.; De Clercq, E.; Balzarini, J. Nucleotide delivery from cycloSal-3'-azido-3'-deoxythymidine monophosphates (cycloSal-AZTMP). Eur. J. Org. Chem. 1998, 837-846.
(e) Balzarini, J.; Haller-Meier, F.; De Clercq, E.; Meier, C. Antiviral activity of cyclosaligenyl prodrugs of acyclovir, carbovir and abacavir. Antiviral Chem. Chemother. 2002, 12, 301-306.
(22) Meier, C.; Habel, L.; Haller-Meier, F.; Lomp, A.; Herderich, M.; Klöcking, R.; Meerbach, A.; Wutzler, P. Chemistry and antiherpes simplex virus type 1 evaluation of cycloSal-nucleotides of acyclic nucleoside analogues. Antiviral Chem. Chemother. 1998, 9, 389-402.
(23) (a) Farrow, S. N.; J ones, A. S.; Kumar, A.; Walker, R. T.; Balzarini, J.; De Clercq, E. Synthesis and biological properties of novel phosphortriester: A new approach to the introduction of biologically active nucleotides into cells. J. Med. Chem. 1990, 33, 1400-1406. (b) Herdewijn, P.; Charubala, R.; De Clercq, E.; Pfleiderer, W. Synthesis of $2^{\prime}-5^{\prime}$ connected oligonucleotides. Prodrugs for antiviral and antitumoral nucleosides. Helv. Chim. Acta 1989, 72, 1739-1748.
(24) Meier, C.; Lomp, A.; Meerbach, A.; Wutzler, P. cycloSaligenyl-5-[(E)-2-bromovinyl]-2'-deoxyuridine monophosphate (cycloSalBVDUMP) pronucleotides active against Epstein-Barr Virus. ChemBioChem 2001, 4, 283-285.
(25) Mugnier, F.; Meier, C. Phosphoramidite chemistry for the synthesis of cycloSal-pro-nucleotides. Nucleosides Nucleotides 1999, 18, 941-942.
(26) Zimmermann, T. P.; Mahony, W. B.; Prus, K. L. 3'-Azido3'deoxythymidine, an Unusual Nucleoside Analogue that Permeates the Membrane of Human Erythrocytes and Lymphocytes by Nonfacilitated Diffusion. J. Biol. Chem. 1987, 262, 57485754
(27) Lomp, A.; Meier, C.; Herderich, M; Wutzler, P. Evidence for cyclophosphate formation during hydrolysis of 3-methyl-cydoSalPCVMP. Nucleosides Nucleotides 1999, 18, 943-944.
(28) Meier, C.; Lomp, A.; Meerbach, A.; Wutzler, P. Synthesis, hydrolysis and anti-EBV activity of a series of 3'-modified cycloSal-BVDUMP pronucleotides. Nucleosides Nucleotides Nucleic Acids 2001, 20, 307-314.
(29) Balzarini, J .; Aquaro, S.; K nispel, T.; Rampazzo, C.; Bianchi, V.; Perno, C.-F.; De Clercq, E.; Meier, C. Cyclosaligenyl-2', $3^{\prime}-$ didehydro-2', $3^{\prime}$-dideoxythymidine monophosphate: Efficient intracellular delivery of d4TMP. Mol. Pharmacol. 2000, 58, 928935.
(30) Balzarini, J.; Naesens, L.; Aquaro, S.; Knispel, T.; Perno, C.-F.; De Clercq, E.; Meier, C. Intracellular metabolism of cycloSaligenyl $3^{\prime}$-azido- $2^{\prime}, 3^{\prime}$-dideoxythymidine monophosphate, a prodrug of 3'-azido-2', 3'-dideoxythymidine (Zidovudine). Mol. Pharmacol. 1999, 56, 1354-1361.
(31) Lin, J.-C.; Shaw, J. E.; Smith, M. C.; Pagano, J. S. Effect of 12-O-Tetra-decanoylphorbol-13-acetate on the replication of Ep-stein-Barr Virus. I. Characterization of viral DNA. Virology 1979, 99, 183-187.
(32) Meerbach, A.; Holy, A.; Wutzler, P.; De Clercq, E.; Neyts, J. Inhibitory effects of novel nucleoside and nucleotide analogues on Epstein-Barr virus replicaton. Antiviral Chem. Chemother. 1998, 9, 275-282.

J M 0209275


[^0]:    * To whom correspondence should be addressed. Tel: +49-40-428384324; Fax: +49-40-42838-2495; e-mail: chris.meier@chemie.unihamburg.de.
    $\dagger$ University of Hamburg.
    \# Friedrich-Schiller-University J ena.

